Refine
Year of publication
Document Type
- Article (99)
- Preprint (8)
- Conference Proceeding (4)
- Contribution to a Periodical (3)
- Book (1)
- Working Paper (1)
Has Fulltext
- yes (116)
Is part of the Bibliography
- no (116)
Keywords
- COVID-19 (5)
- SARS-CoV-2 (4)
- ACLF (2)
- Biomarkers (2)
- Cirrhosis (2)
- Genetics (2)
- HCC (2)
- Immunology (2)
- NASH (2)
- risk factors (2)
Institute
Plants, fungi and algae are important components of global biodiversity and are fundamental to all ecosystems. They are the basis for human well-being, providing food, materials and medicines. Specimens of all three groups of organisms are accommodated in herbaria, where they are commonly referred to as botanical specimens.The large number of specimens in herbaria provides an ample, permanent and continuously improving knowledge base on these organisms and an indispensable source for the analysis of the distribution of species in space and time critical for current and future research relating to global biodiversity. In order to make full use of this resource, a research infrastructure has to be built that grants comprehensive and free access to the information in herbaria and botanical collections in general. This can be achieved through digitization of the botanical objects and associated data.The botanical research community can count on a long-standing tradition of collaboration among institutions and individuals. It agreed on data standards and standard services even before the advent of computerization and information networking, an example being the Index Herbariorum as a global registry of herbaria helping towards the unique identification of specimens cited in the literature.In the spirit of this collaborative history, 51 representatives from 30 institutions advocate to start the digitization of botanical collections with the overall wall-to-wall digitization of the flat objects stored in German herbaria. Germany has 70 herbaria holding almost 23 million specimens according to a national survey carried out in 2019. 87% of these specimens are not yet digitized. Experiences from other countries like France, the Netherlands, Finland, the US and Australia show that herbaria can be comprehensively and cost-efficiently digitized in a relatively short time due to established workflows and protocols for the high-throughput digitization of flat objects.Most of the herbaria are part of a university (34), fewer belong to municipal museums (10) or state museums (8), six herbaria belong to institutions also supported by federal funds such as Leibniz institutes, and four belong to non-governmental organizations. A common data infrastructure must therefore integrate different kinds of institutions.Making full use of the data gained by digitization requires the set-up of a digital infrastructure for storage, archiving, content indexing and networking as well as standardized access for the scientific use of digital objects. A standards-based portfolio of technical components has already been developed and successfully tested by the Biodiversity Informatics Community over the last two decades, comprising among others access protocols, collection databases, portals, tools for semantic enrichment and annotation, international networking, storage and archiving in accordance with international standards. This was achieved through the funding by national and international programs and initiatives, which also paved the road for the German contribution to the Global Biodiversity Information Facility (GBIF).Herbaria constitute a large part of the German botanical collections that also comprise living collections in botanical gardens and seed banks, DNA- and tissue samples, specimens preserved in fluids or on microscope slides and more. Once the herbaria are digitized, these resources can be integrated, adding to the value of the overall research infrastructure. The community has agreed on tasks that are shared between the herbaria, as the German GBIF model already successfully demonstrates.We have compiled nine scientific use cases of immediate societal relevance for an integrated infrastructure of botanical collections. They address accelerated biodiversity discovery and research, biomonitoring and conservation planning, biodiversity modelling, the generation of trait information, automated image recognition by artificial intelligence, automated pathogen detection, contextualization by interlinking objects, enabling provenance research, as well as education, outreach and citizen science.We propose to start this initiative now in order to valorize German botanical collections as a vital part of a worldwide biodiversity data pool.
Investigators in the cognitive neurosciences have turned to Big Data to address persistent replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. While there is tremendous potential to advance science through open data sharing, these efforts unveil a host of new questions about how to integrate data arising from distinct sources and instruments. We focus on the most frequently assessed area of cognition - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated raw data from 53 studies from around the world which measured at least one of three distinct verbal learning tasks, totaling N = 10,505 healthy and brain-injured individuals. A mega analysis was conducted using empirical bayes harmonization to isolate and remove site effects, followed by linear models which adjusted for common covariates. After corrections, a continuous item response theory (IRT) model estimated each individual subject’s latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance by 37% while preserving covariate effects. The effects of age, sex, and education on scores were found to be highly consistent across memory tests. IRT methods for equating scores across AVLTs agreed with held-out data of dually-administered tests, and these tools are made available for free online. This work demonstrates that large-scale data sharing and harmonization initiatives can offer opportunities to address reproducibility and integration challenges across the behavioral sciences.
Two-particle correlation functions of negative hadrons over wide phase space, and transverse mass spectra of negative hadrons and deuterons near mid-rapidity have been measured in central Pb+Pb collisions at 158 GeV per nucleon by the NA49 experiment at the CERN SPS. A novel Coulomb correction procedure for the negative two-particle correlations is employed making use of the measured oppositely charged particle correlation. Within an expanding source scenario these results are used to extract the dynamic characteristics of the hadronic source, resolving the ambiguities between the temperature and transverse expansion velocity of the source, that are unavoidable when single and two particle spectra are analysed separately. The source shape, the total duration of the source expansion, the duration of particle emission, the freeze-out temperature and the longitudinal and transverse expansion velocities are deduced.
The directed and elliptic flow of protons and charged pions has been observed from the semi-central collisions of a 158 GeV/nucleon Pb beam with a Pb target. The rapidity and transverse momentum dependence of the flow has been measured. The directed flow of the pions is opposite to that of the protons but both exhibit negative flow at low pt. The elliptic flow of both is fairly independent of rapidity but rises with pt. PACS numbers: 25.75.-q, 25.75.Ld
Using the NA49 main TPC, the central production of hyperons has been measured in CERN SPS Pb - Pb collisions at 158 GeV c-1. The preliminary ratio, studied at 2.0 < y < 2.6 and 1 < pT < 3 GeV c-1, equals ~ (13 ± 4)% (systematic error only). It is compatible, within errors, with the previously obtained ratios for central S + S [1], S + W [2], and S + Au [3] collisions. The fit to the transverse momentum distribution resulted in an inverse slope parameter T of 297 MeV. At this level of statistics we do not see any noticeable enhancement of hyperon production with the increased volume (and, possibly, degree of equilibration) of the system from S + S to Pb + Pb. This result is unexpected and counterintuitive, and should be further investigated. If confirmed, it will have a significant impact on our understanding of mechanisms leading to the enhanced strangeness production in heavy-ion collisions.
Preliminary data on phi production in central Pb + Pb collisions at 158 GeV per nucleon are presented, measured by the NA49 experiment in the hadronic decay channel phi - K+K-. At mid-rapidity, the kaons were separated from pions and protons by combining dE/dx and time-of-flight information; in the forward rapidity range only dE/dx identification was used to obtain the rapidity distribution and a rapidity-integrated mt-spectrum. The mid-rapidity yield obtained was dN/dy = 1.85 ± 0.3 per event; the total phi multiplicity was estimated to be 5.0 ± 0.7 per event. Comparison with published pp data shows a slight, but not very significant strangeness enhancement.
The large acceptance TPCs of the NA49 spectrometer allow for a systematic multidimensional study of two-particle correlations in different part of phase space. Results from Bertsch-Pratt and Yano-Koonin-Podgoretskii parametrizations are presented differentially in transverse pair momentum and pair rapidity. These studies give an insight into the dynamical space-time evolution of relativistic Pb+Pb collisions, which is dominated by longitudinal expansion.
Lambda and Antilambda reconstruction in central Pb+Pb collisions using a time projection chamber
(1997)
The large acceptance time projection chambers of the NA49 experiment are used to record the trajectory of charged particles from Pb + Pb collisions at 158 GeV per nucleon. Neutral strange hadrons have been reconstructed from their charged decay products. To obtain distributions of Λ, and Ks0 in discrete bins of rapidity, y, and transverse momentum, pT, calculations have been performed to determine the acceptance of the detector and the efficiency of the reconstruction software as a function of both variables. The lifetime distributions obtained give values of cτ = 7.8 ± 0.6 cm for Λ and cτ = 2.5 ± 0.3 cm for Ks0, consistent with data book values.
Background: This study assessed the ability of mid-regional proadrenomedullin (MR-proADM) in comparison to conventional biomarkers (procalcitonin (PCT), lactate, C-reactive protein) and clinical scores to identify disease severity in patients with sepsis.
Methods: This is a secondary analysis of a randomised controlled trial in patients with severe sepsis or septic shock across 33 German intensive care units. The association between biomarkers and clinical scores with mortality was assessed by Cox regression analysis, area under the receiver operating characteristic and Kaplan-Meier curves. Patients were stratified into three severity groups (low, intermediate, high) for all biomarkers and scores based on cutoffs with either a 90% sensitivity or specificity.
Results: 1089 patients with a 28-day mortality rate of 26.9% were analysed. According to the Sepsis-3 definition, 41.2% and 58.8% fulfilled the criteria for sepsis and septic shock, with respective mortality rates of 20.0% and 32.1%. MR-proADM had the strongest association with mortality across all Sepsis-1 and Sepsis-3 subgroups and could facilitate a more accurate classification of low (e.g. MR-proADM vs. SOFA: N = 265 vs. 232; 9.8% vs. 13.8% mortality) and high (e.g. MR-proADM vs. SOFA: N = 161 vs. 155; 55.9% vs. 41.3% mortality) disease severity. Patients with decreasing PCT concentrations of either ≥ 20% (baseline to day 1) or ≥ 50% (baseline to day 4) but continuously high MR-proADM concentrations had a significantly increased mortality risk (HR (95% CI): 19.1 (8.0–45.9) and 43.1 (10.1–184.0)).
Conclusions: MR-proADM identifies disease severity and treatment response more accurately than established biomarkers and scores, adding additional information to facilitate rapid clinical decision-making and improve personalised sepsis treatment.
DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer
(2011)
TAp63a, a homolog of the p53 tumor suppressor, is a quality control factor in the female germline. Remarkably, already undamaged oocytes express high levels of the protein, suggesting that TAp63a’s activity is under tight control of an inhibitory mechanism. Biochemical studies have proposed that inhibition requires the C-terminal transactivation inhibitory domain. However, the structural mechanism of TAp63a inhibition remains unknown. Here, we show that TAp63a is kept in an inactive dimeric state. We reveal that relief of inhibition leads to tetramer formation with ~20-fold higher DNA affinity. In vivo, phosphorylation-triggered tetramerization of TAp63a is not reversible by dephosphorylation. Furthermore, we show that a helix in the oligomerization domain of p63 is crucial for tetramer stabilization and competes with the transactivation domain for the same binding site. Our results demonstrate how TAp63a is inhibited by complex domain-domain interactions that provide the basis for regulating quality control in oocytes.