Refine
Year of publication
Has Fulltext
- yes (163)
Is part of the Bibliography
- no (163)
Keywords
- e +-e − Experiments (8)
- Festuco-Brometea (5)
- conservation (5)
- vegetation classification (5)
- Koelerio-Corynephoretea (4)
- Particle and Resonance Production (4)
- Spectroscopy (4)
- species richness (4)
- Exotics (3)
- Quarkonium (3)
Institute
- Physik (106)
- Medizin (24)
- Biowissenschaften (5)
- Biodiversität und Klima Forschungszentrum (BiK-F) (2)
- Frankfurt Institute for Advanced Studies (FIAS) (2)
- Informatik (2)
- Senckenbergische Naturforschende Gesellschaft (2)
- Biochemie und Chemie (1)
- Biochemie, Chemie und Pharmazie (1)
- Center for Membrane Proteomics (CMP) (1)
Wir untersuchten den Einfluss der Umwelt und Landnutzung auf die Vegetation artenreicher Wiesen und Weiden im nordwestdeutschen Mittelgebirgsraum in Südniedersachsen. In drei Teilgebieten (Ith, Rühler Schweiz, und Wangelnstedter Berge) wurden 152 Vegetationsaufnahmen von artenreichen Wiesen und Weiden erstellt und für jede Aufnahmefläche der pH-Wert, die Meereshöhe, Hanglage, Hangneigung, Ellenberg-Zeigerwerte für Nährstoffe, Feuchte, Reaktion und Temperatur, Nutzungswertzahlen nach Briemle sowie die aktuelle Landnutzung bestimmt. Die meisten Bestände im Ith und in den Wangelnstedter Bergen stellen magere Glatthaferwiesen des Arrhenatheretum ranunculetosum dar. In der Rühler Schweiz kommen vor allem magere Kammgrasweiden des Cynosuro-Lolietum luzuletosum vor. Magere Grasländer auf mäßig sauren Böden wurden als Borstgrasrasen des Polygalo-Nardetum sowie Rotschwingelrasen innerhalb der Arrhenatheretalia klassifiziert. Die floristischen Hauptgradienten in der Vegetation sind mit Variablen, die die Nährstoffversorgung der Standorte anzeigen, aber auch mit dem pH-Wert des Bodens und der Bodenfeuchte eng korreliert. Die Meereshöhe der Flächen (130–385 m ü. NN) hat nur einen mäßigen Einfluss auf die Variation der Vegetation, ist aber für das Vorkommen mehrerer Montanzeiger wichtig. Der Pflanzenartenreichtum der Grasländer ist positiv mit der Hangneigung der Flächen und dem pH-Wert des Bodens und negativ mit den Zeigerwerten für Nährstoffe und Feuchte korreliert. Die Nutzungswertzahlen zeigen bei Borstgrasrasen niedrige und sonst hohe Pflegebedürftigkeit. Hohe Trittzahlen der Glatthaferwiesen können auf ihre Nutzung als Extensivumtriebsweide zurückgeführt werden. Anscheinend eignet sich diese Nutzungsform in Untersuchungsgebiet zum Erhalt magerer Wiesen.
At the edge of the Harz Mountains in Lower Saxony a population of the hart's tongue fern (Asplenium scolopendrium) threatened by destruction by a gypsum quarry were transplanted into a dolina which was not populated by the species at that time, and the new population was followed over ten years. 90% of the 59 transplanted plants survived this period and grew larger during the first six years after transplantation. Progenies appeared in the third year after transplantation. Nowadays, in the tenth year after transplantation, there are 1110 progenies, 171 of which are reproducing. Overall, the population increased by 1781% in the ten years. Plants that were planted on a rocky slope or a boulder heap in the new habitat, where soil was available, grew better than plants in rock faces without soil. In contrast, in the rock faces, where substrate was not covered with autumn foliage, more juveniles established. The distance between juveniles and mother plants rarely exceeded three meters, which indicates a limited dispersal potential of the hart’s tongue fern and may explain together with low diaspore pressure as a result of local rarity of the species that the dolina had not been colonized spontaneously. We conclude that transplantations of adult plants or introduction of spores are a suitable measure for preserving hart’s tongue fern populations that are endangered by destruction. In the long run, however, such measures cannot compensate for ongoing destruction of natural habitats by mining activities in the gypsum karst region at the southern edge of the Harz Mountains.
We present the data of the 2nd research expedition of the European Dry Grassland Group (EDGG), which was conducted in 2010 in Central Podolia, Ukraine. The aim was to collect plot data to compare Ukrainian dry grasslands with those of other parts of Europe in terms of syntaxonomy and biodiversity. We sampled 21 nested-plot series (0.0001–100 m2) and 184 normal plots (10 m2) covering the full variety of dry grassland types occurring in the study region. For all plots, we recorded species composi-tion of terrestrial vascular plants, bryophytes and lichens, while for the 226 10-m2 plots we estimated and measured percentage cover of all species, structural, topographic, soil and landuse parameters. The 10-m² plots were used for phytosociological classification based on iteratively refined TWINSPAN classification as well as for DCA ordination. Differences between the derived vegetation types with respect to environmental conditions and species richness were assessed with ANOVAs. We assigned our plots to nine association-level units but refrained from placing them into formal associations with two exceptions. In the study area, dry grasslands of the Festuco-Brometea were far more common than those of the Koelerio-Corynephoretea. Among the Festuco-Brometea, xeric Festucetalia valesiacae grasslands were more frequent and represented by the Festucion valesiacae (2 associations, including the Allio taurici-Dichanthietum ischaemi ass. nova) and the Stipion lessingianae (1) compared to the Brachypodietalia pinnati with the Agrostio vinealis-Avenulion schellianae (3). The Koelerio-Corynephoretea were represented by three associations, each from a different order and alliance: basiphilous outcrops (Alysso alyssoidis-Sedetalia: Alysso alyssoidis-Sedion?), acidophilous outcrops (Sedo-Scleranthetalia: Veronico dillenii-Sedion albi?) and mesoxeric sandy grasslands (Trifolio arvensis-Festucetalia ovinae: Agrostion vinealis). We discuss the issue of the mesoxeric order Galietalia veri placed within the Molinio-Arrhenatheretea by Ukrainian authors and conclude that the content of that order would probably be better placed in the mesoxeric orders of the Koelerio-Corynephoretea and Festuco-Brometea. Other syntaxonomic questions could not be solved with our geographically limited dataset and await a supraregional analysis, e.g. whether the Ukrainian outcrop communities should be assigned to the same alliances as known from Central Europe or rather represent new vicariant units. The analysis of the biodiversity patterns showed that at a grain size of 10 m2, Podolian Koelerio-Corynephoretea communities were overall richer than Festuco-Brometea communities (46.4 vs. 40.6 species). This difference was due to the Koelerio-Corynephoretea containing twice as many bryophytes and nine times more lichens, while vascular plant species richness did not differ significantly between classes. The orders within the classes showed no real differences in species richness. The richness patterns observed in Podolia were almost the opposite of those usually found in dry grasslands, where Brachypodietalia pinnati are richer than Festucetalia valesiacae, and these richer than stands of the Koelerio-Corynpehoretea – and we do not have a good explanation for these idiosyncrasies. In conclusion, Podolian dry grasslands behave quite unexpectedly regarding biodiversity, and their syntaxonomy is still poorly understood. These knowledge gaps can only be addressed with supranational analyses based on comprehensive datasets.
The Transylvanian Plateau in Romania is well known to host large areas of a variety of dry grassland types, still traditionally managed by low-intensity mowing or grazing. While this natural heritage is now under threat from changes in agricultural practices, the diversity of Transylvanian dry grasslands is still little understood. There is a lack of both field data sampled with standardised methods and a syntaxonomic treatment with modern statistical methods and supra-regional perspective. Therefore, the European Dry Grassland Group (EDGG) carried out its first international Research Expedition in Transylvania 2009 to study syntaxonomy, vegetation-environment relationships, and biodiversity patterns of these communities. In various locations across Transylvania, we sampled 10-m² vegetation plots (n = 82) and nested-plot series from 0.0001 m² to 100 m² (n = 20), including all vascular plant, bryophyte, and lichen species, as well as structural and soil data. The vegetation classification was carried out with modified TWINSPAN, followed by determination of diagnostic species with phi values and a small-scale re-assignment of relevés with the aim of crispness maximisation. Both TWINSPAN and ordination revealed three major groups of syntaxa, which were matched to three orders from the class of basiphilous dry grasslands, Festuco-Brometea, represented by one alliance each: rocky dry grasslands (Stipo pulcherrimae-Festucetalia pallentis: Seslerion rigidae); xeric grasslands on deep soils (Festucetalia valesiacae: Stipion lessingianae) and meso-xeric grasslands on deep soils (Brachypodietalia pinnati: Cirsio-Brachypodion pinnati). We accepted nine association-level units plus two that potentially merit association status but were only represented by one relevé each. Most of the units could be identified with one or several previously described associations. To support nomenclatural stability, we provide a nomenclatural revision and designate nomenclatural types where previously there were none. Further, we used DCA ordination and analysis of variance to determine the main environmental drivers of floristic differentiation and to determine ecological and structural differences between the vegetation types. The strongest differentiation occurred along the aridity gradient with the dense, particularly diverse stands on more or less level sites on the one hand (Brachypodietalia pinnati) and the more open, less diverse stands on steep south-facing slopes on the other end of the gradient (Stipo pulcherrimae- Festucetalia pallentis, Festucetalia valesiacae). The two xeric orders were then separated along the second DCA axis, with the Stipo pulcherrimae-Festucetalia pallentis inhabiting the stone-rich sites at higher altitudes while the Festucetalia valesiacae occur on soft, deep substrata at lower altitudes. The analysed dry grassland communities have extraordinarily high -diversity at all spatial scales for all plants and for vascular plants, but are relatively poor in bryophytes and lichens. Some formerly mown stands of the Festuco sulcatae-Brachypodietum pinnati (Brachypodietalia pinnati) are even richer in vascular plant species than any other recorded vegetation type worldwide on the spatial scales of 0.1 m² (43) and 10 m² (98); the respective relevés are documented here for the first time. Also, the b-diversity of the grasslands was unexpectedly high, with a mean z-value of 0.275. Despite its limited extent, the methodological thoroughness of this study allows us to shed new light on the syntaxonomy of dry grasslands in Romania and to raise the awareness that Transylvania still hosts High Nature Value grasslands that are bio - diversity hotspots at a global scale but at the same time are highly endangered through changes in agricultural practices.
This report provides a brief review of the 20th annual meeting of the German Language Branch of the Society of Environmental Toxicology and Chemistry (SETAC GLB) held from September 7th to 10th 2015 at ETH (Swiss Technical University) in Zurich, Switzerland. The event was chaired by Inge Werner, Director of the Swiss Centre for Applied Ecotoxicology (Ecotox Centre) Eawag-EPFL, and organized by a team from Ecotox Centre, Eawag, Federal Office of the Environment, Federal Office of Agriculture, and Mesocosm GmbH (Germany). Over 200 delegates from academia, public agencies and private industry of Germany, Switzerland and Austria attended and discussed the current state of science and its application presented in 75 talks and 83 posters. In addition, three invited keynote speakers provided new insights into scientific knowledge ‘brokering’, and—as it was the International Year of Soil—the important role of healthy soil ecosystems. Awards were presented to young scientists for best oral and poster presentations, and for best 2014 master and doctoral theses. Program and abstracts of the meeting (mostly in German) are provided as Additional file 1.
Ribosome recycling orchestrated by the ATP binding cassette (ABC) protein ABCE1 can be considered as the final—or the first—step within the cyclic process of protein synthesis, connecting translation termination and mRNA surveillance with re-initiation. An ATP-dependent tweezer-like motion of the nucleotide-binding domains in ABCE1 transfers mechanical energy to the ribosome and tears the ribosome subunits apart. The post-recycling complex (PRC) then re-initiates mRNA translation. Here, we probed the so far unknown architecture of the 1-MDa PRC (40S/30S·ABCE1) by chemical cross-linking and mass spectrometry (XL-MS). Our study reveals ABCE1 bound to the translational factor-binding (GTPase) site with multiple cross-link contacts of the helix–loop–helix motif to the S24e ribosomal protein. Cross-linking of the FeS cluster domain to the ribosomal protein S12 substantiates an extreme lever-arm movement of the FeS cluster domain during ribosome recycling. We were thus able to reconstitute and structurally analyse a key complex in the translational cycle, resembling the link between translation initiation and ribosome recycling.
The endoplasmic reticulum–mitochondria encounter structure (ERMES) connects the mitochondrial outer membrane with the ER. Multiple functions have been linked to ERMES, including maintenance of mitochondrial morphology, protein assembly and phospholipid homeostasis. Since the mitochondrial distribution and morphology protein Mdm10 is present in both ERMES and the mitochondrial sorting and assembly machinery (SAM), it is unknown how the ERMES functions are connected on a molecular level. Here we report that conserved surface areas on opposite sides of the Mdm10 β-barrel interact with SAM and ERMES, respectively. We generated point mutants to separate protein assembly (SAM) from morphology and phospholipid homeostasis (ERMES). Our study reveals that the β-barrel channel of Mdm10 serves different functions. Mdm10 promotes the biogenesis of α-helical and β-barrel proteins at SAM and functions as integral membrane anchor of ERMES, demonstrating that SAM-mediated protein assembly is distinct from ER-mitochondria contact sites.
The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.
MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy
(2014)
Recently, mutations in the mitochondrial translation optimization factor 1 gene (MTO1) were identified as causative in children with hypertrophic cardiomyopathy, lactic acidosis and respiratory chain defect. Here, we describe an MTO1-deficient mouse model generated by gene trap mutagenesis that mirrors the human phenotype remarkably well. As in patients, the most prominent signs and symptoms were cardiovascular and included bradycardia and cardiomyopathy. In addition, the mutant mice showed a marked worsening of arrhythmias during induction and reversal of anaesthesia. The detailed morphological and biochemical workup of murine hearts indicated that the myocardial damage was due to complex I deficiency and mitochondrial dysfunction. In contrast, neurological examination was largely normal in Mto1-deficient mice. A translational consequence of this mouse model may be to caution against anaesthesia-related cardiac arrhythmias which may be fatal in patients.
Filoviruses infect a wide range of cell types with the exception of lymphocytes. The intracellular proteins cathepsin B and L, two-pore channel 1 and 2, and bona fide receptor Niemann–Pick Disease C1 (NPC1) are essential for the endosomal phase of cell entry. However, earlier steps of filoviral infection remain poorly characterized. Numerous plasma membrane proteins have been implicated in attachment but it is still unclear which ones are sufficient for productive entry. To define a minimal set of host factors required for filoviral glycoprotein-driven cell entry, we screened twelve cell lines and identified the nonlymphocytic cell line SH-SY5Y to be specifically resistant to filovirus infection. Heterokaryons of SH-SY5Y cells fused to susceptible cells were susceptible to filoviruses, indicating that SH-SY5Y cells do not express a restriction factor but lack an enabling factor critical for filovirus entry. However, all tested cell lines expressed functional intracellular factors. Global gene expression profiling of known cell surface entry factors and protein expression levels of analyzed attachment factors did not reveal any correlation between susceptibility and expression of a specific host factor. Using binding assays with recombinant filovirus glycoprotein, we identified cell attachment as the step impaired in filovirus entry in SH-SY5Y cells. Individual overexpression of attachment factors T-cell immunoglobulin and mucin domain 1 (TIM-1), Axl, Mer, or dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) rendered SH-SY5Y cells susceptible to filovirus glycoprotein-driven transduction. Our study reveals that a lack of attachment factors limits filovirus entry and provides direct experimental support for a model of filoviral cell attachment where host factor usage at the cell surface is highly promiscuous.