Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Biodiversity (1)
- Ontologies (1)
- Specialized Information Service (1)
- Text mining (1)
- corpus study (1)
- economics (1)
- information landscape (1)
- intertextual similarity (1)
- intratextual similarity (1)
- knowledge graphs (1)
We test the hypothesis that the extent to which one obtains information on a given topic through Wikipedia depends on the language in which it is consulted. Controlling the size factor, we investigate this hypothesis for a number of 25 subject areas. Since Wikipedia is a central part of the web-based information landscape, this indicates a language-related, linguistic bias. The article therefore deals with the question of whether Wikipedia exhibits this kind of linguistic relativity or not. From the perspective of educational science, the article develops a computational model of the information landscape from which multiple texts are drawn as typical input of web-based reading. For this purpose, it develops a hybrid model of intra- and intertextual similarity of different parts of the information landscape and tests this model on the example of 35 languages and corresponding Wikipedias. In the way it measures the similarities of hypertexts, the article goes beyond existing approaches by examining their structural and semantic aspects intra- and intertextually. In this way it builds a bridge between reading research, educational science, Wikipedia research and computational linguistics.
Are nearby places (e.g., cities) described by related words? In this article, we transfer this research question in the field of lexical encoding of geographic information onto the level of intertextuality. To this end, we explore Volunteered Geographic Information (VGI) to model texts addressing places at the level of cities or regions with the help of so-called topic networks. This is done to examine how language encodes and networks geographic information on the aboutness level of texts. Our hypothesis is that the networked thematizations of places are similar, regardless of their distances and the underlying communities of authors. To investigate this, we introduce Multiplex Topic Networks (MTN), which we automatically derive from Linguistic Multilayer Networks (LMN) as a novel model, especially of thematic networking in text corpora. Our study shows a Zipfian organization of the thematic universe in which geographical places (especially cities) are located in online communication. We interpret this finding in the context of cognitive maps, a notion which we extend by so-called thematic maps. According to our interpretation of this finding, the organization of thematic maps as part of cognitive maps results from a tendency of authors to generate shareable content that ensures the continued existence of the underlying media. We test our hypothesis by example of special wikis and extracts of Wikipedia. In this way, we come to the conclusion that geographical places, whether close to each other or not, are located in neighboring semantic places that span similar subnetworks in the topic universe.
The ongoing digitalization of educational resources and the use of the internet lead to a steady increase of potentially available learning media. However, many of the media which are used for educational purposes have not been designed specifically for teaching and learning. Usually, linguistic criteria of readability and comprehensibility as well as content-related criteria are used independently to assess and compare the quality of educational media. This also holds true for educational media used in economics. This article aims to improve the analysis of textual learning media used in economic education by drawing on threshold concepts. Threshold concepts are key terms in knowledge acquisition within a domain. From a linguistic perspective, however, threshold concepts are instances of specialized vocabularies, exhibiting particular linguistic features. In three kinds of (German) resources, namely in textbooks, in newspapers, and on Wikipedia, we investigate the distributive profiles of 63 threshold concepts identified in economics education (which have been collected from threshold concept research). We looked at the threshold concepts' frequency distribution, their compound distribution, and their network structure within the three kinds of resources. The two main findings of our analysis show that firstly, the three kinds of resources can indeed be distinguished in terms of their threshold concepts' profiles. Secondly, Wikipedia definitely shows stronger associative connections between economic threshold concepts than the other sources. We discuss the findings in relation to adequate media use for teaching and learning—not only in economic education.
Viele Methoden wurden in dieser Arbeit vorgestellt, die sich mit dem Hauptziel der automatischen Dokumentenanalyse auf semantischer Ebene befassen. Um das Hauptziel zu erreichen, mussten wir jedoch zunächst eine solide Basis entwickeln, um das Gesamtbild zu vervollständigen. So wurden verschiedene Methoden und Werkzeuge entwickelt, die verschiedene Aspekte des NLP abdecken. Das Zusammenspiel dieser Methoden ermöglichte es, unser Ziel erfolgreich zu erreichen. Neben der automatischen Dokumentenanalyse legen wir großen Wert auf die drei Prinzipien von Effizienz, Anwendbarkeit und Sprachunabhängigkeit. Dadurch waren die entwickelten Tools für die Anwendungen bereit. Die Größe und Sprache der zu analysierenden Daten ist kein Hindernis mehr, zumindest für die im Bezug auf die von Wikipedia unterstützten Sprachen.
Einen großen Beitrag dazu leistete TextImager, das Framework, dass für die zugrunde liegende Architektur verschiedener Methoden und die gesamte Vorverarbeitung der Texte verantwortlich ist. TextImager ist als Multi-Server und Multi-Instanz-Cluster konzipiert, sodass eine verteilte Verarbeitung von Daten ermöglicht wird. Hierfür werden Cluster-Management-Dienste UIMA-AS und UIMA-DUCC verwendet. Darüber hinaus ermöglicht die Multi-Service-Architektur von TextImager die Integration beliebiger NLP-Tools und deren gemeinsame Ausführung. Zudem bietet der TextImager eine webbasierte Benutzeroberfläche, die eine Reihe von interaktiven Visualisierungen bietet, die die Ergebnisse der Textanalyse darstellen. Das Webinterface erfordert keine Programmierkenntnisse - durch einfaches Auswählen der NLP-Komponenten und der Eingabe des Textes wird die Analyse gestartet und anschließend visualisiert, so dass auch Nicht-Informatiker mit diesen Tools arbeiten können.
Zudem haben wir die Integration des statistischen Frameworks R in die Funktionalität und Architektur von TextImager demonstriert. Hier haben wir die OpenCPU-API verwendet, um R-Pakete auf unserem eigenen R-Server bereitzustellen. Dies ermöglichte die Kombination von R-Paketen mit den modernsten NLP-Komponenten des TextImager. So erhielten die Funktionen der R-Pakete extrahierte Informationen aus dem TextImager, was zu verbesserten Analysen führte.
Darüber hinaus haben wir interaktive Visualisierungen integriert, um die von R abgeleiteten Informationen zu visualisieren.
Einige der im TextImager entwickelten Visualisierungen sind besonders herausragend und haben in vielen Bereichen Anwendung gefunden. Ein Beispiel dafür ist PolyViz, ein interaktives Visualisierungssystem, das die Darstellung eines multipartiten Graphen ermöglicht. Wir haben PolyViz anhand von zwei verschiedenen Anwendungsfällen veranschaulicht.
SemioGraph, eine Visualisierungstechnik zur Darstellung multikodaler Graphen wurde auch vorgestellt. Die visuellen und interaktiven Funktionen von SemioGraph wurden mit einer Anwendung zur Visualisierung von Worteinbettungen vorgestellt. Wir haben gezeigt, dass verschiedene Modelle zu völlig unterschiedlichen Grafiken führen können. So kann Semiograph bei der Suche nach Worteinbettungen für bestimmte NLP-Aufgaben helfen.
Inspiriert von all den Textvisualisierungen im TextImager ist die Idee für text2voronoi geboren. Hier stellten wir einen neuartigen Ansatz zur bildgetriebenen Textklassifizierung vor, der auf einem Voronoi-Diagram linguistischer Merkmale basiert. Dieser Klassifikationsansatz wurde auf die automatische Patientendiagnose angewendet und wir haben gezeigt, dass wir das traditionelle Bag-Of-Words-Modell sogar übertreffen. Dieser Ansatz ermöglicht es, die zugrunde liegenden Merkmale anschließend zu analysieren und damit einen ersten Schritt zur Lösung der Black Box zu machen.
Wir haben text2voronoi auf literarische Werke angewendet und die entstandenen Visualisierungen auf einer webbasierten Oberfläche (LitViz) präsentiert. Hier ermöglichen wir den Vergleich von Voronoi-Diagrammen der verschiedenen Literaturen und damit den visuellen Vergleich der Sprachstile der zugrunde liegenden Autoren.
Mit unserer Kompetenz in der Vorverarbeitung und der Analyse von Texten sind wir unserem Ziel der semantischen Dokumentenanalyse einen Schritt näher gekommen. Als nächstes haben wir die Auflösung der Sinne auf der Wortebene untersucht. Hier stellten wir fastSense vor, ein Disambigierungsframework, das mit großen Datenmengen zurecht kommt. Um dies zu erreichen, haben wir einen Disambiguierungskorpus erstellt, der auf Wikipedias 221965 Disambiguierungsseiten basiert, wobei die sich auf 825179 Sinne beziehen. Daraus resultierten mehr als 50 Millionen Datensätze, die fast 50 GB Speicherplatz benötigten. Wir haben nicht nur gezeigt, dass fastSense eine so große Datenmenge problemlos verarbeiten kann, sondern auch, dass wir mit unseren Wettbewerbern mithalten und sie bei einigen NLP-Aufgaben sogar übertreffen können.
Jetzt, da wir den Wörtern Sinne zuordnen können, sind wir der semantischen Dokumentenanalyse einen weiteren Schritt näher gekommen. Je mehr Informationen wir aus einem Text und seinen Wörtern gewinnen können, desto genauer können wir seinen Inhalt analysieren. Wir stellten zudem einen netzwerktheoretischen Ansatz zur Modellierung der Semantik großer Textnetzwerke am Beispiel der deutschen Wikipedia vor. Zu diesem Zweck haben wir einen Algorithmus namens text2ddc entwickelt, um die thematische Struktur eines Textes zu modellieren. Dabei basiert das Modell auf einem etablierten Klassifikationsschema, nämlich der Dewey Decimal Classification. Mit diesem Modell haben wir gezeigt, wie man aus der Vogelperspektive die Hervorhebung und Verknüpfung von Themen, die sich in Millionen von Dokumenten manifestiert, darstellt. So haben wir eine Möglichkeit geschaffen, die thematische Dynamik von Dokumentnetzwerken automatisch zu visualisieren. Die Trainings- und Testdaten, die wir in diesem Kapitel hatten, bestanden jedoch hauptsächlich aus kurzen Textausschnitten. Zudem haben wir DDC Korpora erstellt, indem wir Informationen aus Wikidata, Wikipedia und der von der Deutschen Nationalbibliothek verwalteten Gemeinsamen Normdatei (GND) vereinigt haben. Auf diese Weise konnten wir nicht nur die Datenmenge erhöhen, sondern auch Datensätze für viele bisher unzugängliche Sprachen erstellen. Wir haben text2ddc so weit optimiert, dass wir einen F-score von 87.4% erzielen für die 98 Klassen der zweiten DDC-Stufe. Die Vorverarbeitung von TextImager und die Disambiguierung durch fastSense hatten einen großen Einfluss darauf. Für jedes Textstück berechnet text2ddc eine Wahrscheinlichkeitsverteilung über die DDC-Klassen berechnen
Der klassifikatorinduzierte semantische Raum von text2ddc wurde auch zur Verbesserung weiterer NLP-Methoden genutzt. Dazu gehört auch text2wiki, ein Framework für automatisches Tagging nach dem Wikipedia-Kategoriensystem. Auch hier haben wir einen klassifikatorinduzierten semantischen Raum, aber diesmal basiert er auf dem Wikipedia-Kategoriensystem. Ein großer Vorteil dieses Modells ist die Präzision und Tiefe der behandelten Themen und das sich ständig weiterentwickelnde Kategoriesystem. Damit sind auch die Kriterien eines offenen Themenmodells erfüllt. Um die Vorteile von text2wiki zu demonstrieren, haben wir anschließend die von text2wiki bereitgestellten Themenvektoren verwendet, um text2ddc zu verbessern, so dass sich beide Systeme gegenseitig verbessern können. Die Synergie zwischen den erstellten Methoden in dieser Dissertation war entscheidend für den Erfolg jeder einzelnen Methode.
BIOfid is a specialized information service currently being developed to mobilize biodiversity data dormant in printed historical and modern literature and to offer a platform for open access journals on the science of biodiversity. Our team of librarians, computer scientists and biologists produce high-quality text digitizations, develop new text-mining tools and generate detailed ontologies enabling semantic text analysis and semantic search by means of user-specific queries. In a pilot project we focus on German publications on the distribution and ecology of vascular plants, birds, moths and butterflies extending back to the Linnaeus period about 250 years ago. The three organism groups have been selected according to current demands of the relevant research community in Germany. The text corpus defined for this purpose comprises over 400 volumes with more than 100,000 pages to be digitized and will be complemented by journals from other digitization projects, copyright-free and project-related literature. With TextImager (Natural Language Processing & Text Visualization) and TextAnnotator (Discourse Semantic Annotation) we have already extended and launched tools that focus on the text-analytical section of our project. Furthermore, taxonomic and anatomical ontologies elaborated by us for the taxa prioritized by the project’s target group - German institutions and scientists active in biodiversity research - are constantly improved and expanded to maximize scientific data output. Our poster describes the general workflow of our project ranging from literature acquisition via software development, to data availability on the BIOfid web portal (http://biofid.de/), and the implementation into existing platforms which serve to promote global accessibility of biodiversity data.