Refine
Year of publication
Document Type
- Doctoral Thesis (35)
Has Fulltext
- yes (35)
Is part of the Bibliography
- no (35)
Keywords
- Cytochromoxidase (2)
- Paracoccus denitrificans (2)
- Pichia pastoris (2)
- Atmungskette (1)
- Aufreinigung (1)
- Azide (1)
- Bindestelle (1)
- Biophysik (1)
- Biosensorik (1)
- Black Lipid Membrane (1)
Institute
Die Verarbeitung von Informationen im zentralen Nervensystem beruht auf dem Zusammenspiel von erregender und hemmender Neurotransmission. Die Übertragung von Signalen zwischen Neuronen erfolgt chemisch über die Ausschüttung von Neurotransmittern an spezialisierten Kontaktstellen, den Synapsen. Glyzin und gamma-Aminobuttersäure (GABA) sind die bedeutendsten inhibitorischen Neurotransmitter im zentralen Nervensystem von Säugern, welche Rezeptoren vom Glyzin- (GlyR) und GABAA-Typ (GABAAR) aktivieren. Diese ligandengesteuerten Ionenkanäle sind in postsynaptischen Membranen angereichert und mit intrazellulären Proteinen assoziiert. Die Rekrutierung der Rezeptoren in postsynaptischen Domänen ist ein an das zytoplasmatisch lokalisierte Protein Gephyrin gekoppelter Prozess. So bindet Gephyrin spezifisch an die intrazelluläre Domäne der beta-Untereinheit des GlyR (GlyR beta) und bildet für die Verankerung des Rezeptors ein gerüstartiges Netzwerk unterhalb der synaptischen Membran. Die gezielte Inaktivierung des Gephyrin-Gens führt in Mäusen zu einem postnatal letalen Phänotyp und zu dem Verlust der synaptischen Anreicherung des GlyR und bestimmter GABAA-Rezeptoren auf zellulärer Ebene. Gephyrin ist ein 93 kDa großes Protein, das nicht nur im zentralen Nervensystem (ZNS), sondern auch in anderen Organen wie Leber und Niere exprimiert wird, in denen es an der Synthese des Molybdän-Kofaktors von Oxido-Reduktasen beteiligt ist. Das Gephyrin-Protein wird durch 30 Exons codiert, von denen zehn als sogenannte Kassetten alternativ gespleißt werden können. Die bestuntersuchte Spleißvariante besitzt 736 Aminosäuren und ist in eine N- und eine C-terminale Domäne (Aminosäuren 1-181 bzw. 318-736) sowie eine zentrale Linker-Domäne unterteilt. Die N- und die C-terminalen Bereiche von Gephyrin sind den Proteinen MogA und MoeA aus E. coli homolog und werden daher auch als G-Domäne (N-terminal) bzw. E-Domäne (C-terminal) bezeichnet. In kristallographischen Untersuchungen wurde gezeigt, dass die G- und E-Domänen zur Tri- bzw. Dimerisierung befähigt sind. Diese speziellen Oligomerisierungseigenschaften der beiden Gephyrindomänen bilden wahrscheinlich die Grundlage für die Entstehung von Gephyrin-Clustern sowie eines hexagonalen Gephyrin-Gerüstes. Dieses Gerüst stellt den Verknüpfungspunkt zwischen Rezeptoren und dem Zytoskelett dar und ermöglicht somit die effiziente Clusterbildung und die zielgerichtete Anordnung einer großen Anzahl inhibitorischer Rezeptoren. In der vorliegenden Arbeit sollten die Rolle dieser beiden Domänen bei der Bildung membranassoziierter Gephyrinaggregate und die molekularen Mechanismen der Clusterbildung des Gephyrinmoleküls untersucht werden. Zu diesem Zweck wurden durch zielgerichtete Mutagenese unterschiedliche Gephyrin-Mutanten hergestellt, um die Fähigkeit der Oligomerisierung der G- und E-Domäne gezielt zu modifizieren. Dadurch sollte die Bedeutung der Oligomerisierung hinsichtlich der Aggregat- bzw. Clusterbildung untersucht werden. Außerdem sollten die Wechselwirkungen zwischen Gephyrin und anderen Proteinen und deren Einfluss auf die synaptische Lokalisation analysiert werden. Für diese Untersuchungen wurden auf der Basis von Röntgenstruktur-Daten spezifische Aminosäurereste an den bei der Oligomerisierung beteiligten Kontaktstellen ausgetauscht. In der G-Domäne wurden zu diesem Zweck vier separate Aminosäuren des Trimer-Interface durch Arginin ersetzt (GephRRRR). Analog hierzu wurden in der EDomäne einzelne Aminosäuren durch Arginin bzw. Glutamat substituiert (GephRER), um dadurch eine Dimersierung zu verhindern. Für die Kassette C5’ wird angenommen, dass deren Vorhandensein die Interaktion zwischen Gephyrin und GlyR beeinträchtigt, wodurch GlyR aus GABAergenen Synapsen ausgeschlossen wird. Daher wurde der Einfluss dieser Gephyrin-Spleißvariante (GephC5’), die zu einer Peptidinsertion innerhalb der G-Domäne führt, und einer Gephyrin-Mutante (Gephmut), die den Verlust der Wechselwirkung mit dem GlyR bedingt, auf die Aggregatbildung von Gephyrinoligomeren untersucht. Bei dem Konstrukt Gephmut wurden, basierend auf Daten von Röntgenstrukturuntersuchungen, neun Aminosäuren (713-721) am Cterminalen Ende der E-Domäne durch den homologen Bereich des bakteriellen MoeA Proteins aus E. coli ersetzt. Zunächst wurden die einzelnen isolierten Domänen mittels Gelfiltration hinsichtlich ihres Oligomerisierungsverhaltens untersucht. Die Mutationen wurden hierzu in verkürzte Proteine eingeführt, bei denen nur die G- bzw. die E-Domäne exprimiert wurden. Diese Konstrukte wurden daher als GRRRR, GC5’ bzw. ERER und Emut bezeichnet. Bei diesen zeigte sich, dass die G-Domäne des Gephyrin-Wildtyps zu trimeren Proteinkomplexen oligomerisiert. Im Gegensatz hierzu war die Mutante GRRRR nicht in der Lage, Trimere zu bilden. Das Einfügen der C5’-Kassette führte ebenfalls zu einer Störung der Trimerisierung. Gelfiltrationsexperimente mit der E-Domäne ergaben, dass die mutierte Domäne ERER, im Gegensatz zum Wildtyp-Konstrukt, keine Dimere ausbildet. Bisherige Studien haben jedoch gezeigt, dass das Emut Polypeptid zur Dimerisierung befähigt ist. Das Oligomerisierungsverhalten des kompletten Gephyrin-Proteins wurde mittels blauer nativer Gelelektrophorese (BN-PAGE) analysiert. Für die hier beschriebenen Untersuchungen mit BN-PAGE wurde rekombinantes Gephyrin in Xenopus laevis Oozyten heterolog exprimiert. Die Analyse ergab, dass Wildtyp Gephyrin nativ als Hexamer vorliegt, welches durch ansteigende Konzentrationen des Detergenzes Natriumdodecylsulfat (SDS) in Trimere, Dimere und Monomere zerfällt. Sowohl GephRRRR und GephC5’ liegen nativ fast ausschließlich als Dimere vor, während GephRER nur trimere Aggregate formt. Die entsprechende Doppelmutante mit Mutationen in Gund E-Domäne war wie erwartet nur noch als Monomer existent. Die als Kontrolle eingesetzte Glyzinrezeptor-Bindungsmutante Gephmut bildete, ebenso wie der Wildtyp, Hexamere aus. Daraus folgt, dass die Oligomere der G- bzw E-Domäne Zwischenprodukte der Hexamerbildung darstellen. Die Analyse der Oligomerisierungseigenschaften der Mutanten wurde nachfolgend in humanen embryonalen Nierenzellen (HEK 293T) untersucht. Nach heterologer Expression von Wildtyp Gephyrin in HEK 293T-Zellen formen sich große, charakteristische Gephyrinaggregate. Die Oligomerisierungs-Mutanten GephRRRR, GephRER und GephC5’ aggregierten jedoch nicht, sondern waren diffus im Zytoplasma verteilt. Die wiederum als Kontrolle eingesetzte Bindungsmutante Gephmut hingegen wies eine normale Aggregation auf. Diese Ergebnisse bestätigen die grundlegende Rolle der Oligomerisierung von G- und E- Domänen für die Aggregatbildung von Gephyrin. Mittels GST-Pulldown und Kolokalisationsanalysen in HEK Zellen wurde die Wechselwirkung der Gephyrinmutanten mit der GlyR beta, dem Motorkomplexprotein Dynein light chain-1 (Dlc-1) und dem Guanin-Nukleotid-Austauschfaktor Collybistin (Cb) untersucht. Beide Ansätze weisen darauf hin, dass die Trimerisierung der G-Domäne an der Interaktion von Gephyrin mit Dlc-1 und die Dimerisierung der E-Domäne bei der Bindung an GlyR beta und Cb beteiligt ist. Die Mutante Gephmut zeigte in beiden Fällen einen totalen Verlust der Bindungsfähigkeit sowohl an das GlyR beta Bindungsmotiv als auch an Cb. Der Einbau der C5’ Kassette in Gephyrin scheint jedoch nicht dessen Bindung an den GlyR zu beeinflussen. Für die Analyse der Clusterbildung und des zielgerichteten Transports in Neuronen wurden Wildtyp und mutiertes Gephyrin in hippocampalen und spinalen Primärkulturen der Ratte exprimiert. Zur Überprüfung einer synaptischen Lokalisation wurde Gephyrin gemeinsam mit dem vesikulären inhibitorischen Aminosäure-Transporter (VIAAT), einem präsynaptischen Marker-Protein, detektiert. In beiden Kulturen wies Gephyrin eine punktartige Verteilung in den Neuriten auf und wurde gezielt an Synapsen angereichert. Im Kontrast dazu zeigten alle Oligomerisierungsmutanten, GephRRRR, GephC5’ und GephRER keine Ausbildung von Clustern sondern eine diffuse Verteilung im Zellkörper und in Dendriten. Das Konstrukt Gephmut wies jedoch Clusterbildung und eine punktförmige Verteilung auf. Diese Daten belegen, dass die Oligomerisierung der G- wie auch der E-Domänen für die Clusterbildung und synaptische Lokalisation von Gephyrin unerlässlich ist. Die Wechselwirkung mit dem GlyR und/oder Collybistin ist ebenfalls für die Anreicherung in der Synapse erforderlich, nicht jedoch für die Bildung der Gephyrin-Cluster. Die dargestellten Ergebnisse belegen die Rolle der spezifischen Oligomerisierungseigenschaften der G- und E-Domäne für die Ausbildung des hexagonalen Gephyringerüstes und dessen grundlegende Bedeutung für die spezifische Anreicherung von Gephyrin an inhibitorischen Synapsen in Neuronen.
In dieser Arbeit erfolgt eine Untersuchung der intrazellulären Transporteigenschaften des Na /Glucose Cotransporters SGLT1 aus dem Kaninchen. Der Transporter wird dazu heterolog in Xenopus laevis Oozyten exprimiert. Die hohe Expressionsdichte erlaubt die Anwendung der "giant excised patch clamp"-Technik in der inside-out Konfiguration. Die Patches mit Durchmessern von 20-30 µm enthalten ca. 2,5 - 5·10 hoch 6 Transportern bei einem durchschnittlichen Strom von 20-40 pA. Der Transport des Substrats Glucose bzw. des hier verwendeten alpha MDG wird angetrieben durch den elektrochemischen Gradienten für das Cosubstrat Na . Bei 0 mV Haltepotential wird zuerst die reine Konzentrationsabhängigkeit des Auswärtstransports durch die Bestimmung der apparenten intrazellulären Affinität für alpha MDG bei verschiedenen festen Na -Konzentrationen untersucht. Es kann eine deutliche Abhängigkeit des KM alpha MDG von der Na -Konzentration festgestellt werden. Eine Erhöhung der intrazellulären Na -Konzentration von 10 mM auf 400 mM führt zu einer ca. 12fachen Abnahme des KM alpha MDG. Experimente mit symmetrischer Na -Verteilung zeigen, dass auch ohne Na -Konzentrations-Gradient Transport stattfinden kann, allerdings mit einer deutlich geringeren Affinität für alpha MDG. Verglichen mit Literaturwerten für die extrazelluläre alpha MDG-Affinität ist die intrazelluläre Affinität 10-15mal geringer ist als die extrazelluläre. Die Untersuchung der Abhängigkeit von der Na -Konzentration bei verschiedenen festen MDG-Konzentrationen zeigt, dass KM Na eine geringe Abhängigkeit von der alpha MDG- Konzentration besitzt. Die 10fache Erhöhung der alpha MDG-Konzentration von 25 mM auf 250 mM führt nur zu einer leichten Erniedrigung des KM Na. Die intrazelluläre Na - Affinität liegt in der gleichen Größenordnung wie die extrazelluläre. Zur Untersuchung der intrazellulären Bindungsreihenfolge werden die gemessenen Abhängigkeiten des KM alpha MDG und des I Max von der Na -Konzentration mit Simulationen für die 3 möglichen Bindungsreihenfolgen (2Na :G), (Na :G:Na ) und (G:2Na ) verglichen. Mit den hier gemachten Annahmen für die intrazellulären Bindungskonstanten für MDG und Na wird die beste Übereinstimmung für die intrazelluläre Bindungsreihenfolge (2Na :G) gefunden. Zur Untersuchung des spannungsabhängigen Verhaltens der Affintitäten für alpha MDG und Na werden Spannungssprünge unter denselben Konzentrationsbedingungen wie vorher durchgeführt. Die Strom-Spannungs-Kennlinien zeigen eine Zunahme der zuckerinduzierten Stromamplituden zu positiven Potentialen hin. Dabei wird weder bei hyperpolarisierenden noch bei depolarisierenden Potentialen eine Sättigung erreicht. Dies läßt den Rückschluss, dass im betrachteten Spannungsbereich ein spannungsabhängiger Schritt im Transportzyklus geschwindigkeitsbestimmend ist. Die apparenten Affinitäten für alpha MDG und Na besitzen eine geringe Spannungsabhängigkeit. Der KM alpha MDG bei annähernd sättigender Na -Konzentration fällt zwischen 40 mV und 40 mV um einen Faktor 4,4. Bei verringerter Na -Konzentration beeinflusst das Membranpotential die MDG-Affinität stärker. Der KM Na fällt unter sättigenden Zuckerbedingungen im gleichen Spannungsbereich auf die Hälfte ab, wobei der Hill-Koeffizient konstant bleibt. Die Erniedrigung der alpha MDG-Konzentration verursacht keine Veränderung des spannungsabhängigen Verlaufs. Die Ergebnisse zeigen, dass SGLT1 ein reversibler Transporter ist, der sowohl Einwärts-, aber auch Auswärtstransport von Glucose generieren kann. Er zeigt dabei eine starke Abhängigkeit von der Na -Konzentration und eine geringe Abhängigkeit vom Membranpotential. Die hier bestimmten Eigenschaften zeigen aber auch, dass unter physiologischen Bedingungen ein Auswärtstransport von Glucose sehr unwahrscheinlich ist. Das Zusammenwirken der Faktoren Richtung des Na -Gradient, geringe Zuckeraffinität, negatives Membranpotential und geringe intrazelluläre Na - Konzentration verhindern den Auswärtstransport. Der physiologische Na -Gradient ist dem Auswärtstransport entgegengerichtet. Die geringe intrazelluläre Na -Konzentration und das negative Membranpotential verursachen eine sehr geringe intrazelluläre Zuckeraffinität von ca. 75 mM alpha MDG, so dass ein merklicher Auswärtstransport nur bei einer hohen Zuckerkonzentration innerhalb der Epithelzellen stattfinden kann. Dies wird jedoch durch basolaterale Glucose-Transporter verhindert. Das negative Membran- potential führt zu einer geringen Aktivität des Auswärtstransports. Die geringe intrazelluläre Na -Konzentration liegt weit unterhalb es KM Na , so dass auch hier die Transporteraktivität gering ist. Die asymmetrische Funktionsweise des SGLT1 gewährleistet, dass der Glucose- Transport nur in eine physiologisch sinnvolle Richtung, nämlich der Aufnahme von Glucose in die Epitheltzellen, stattfindet.
In dieser Arbeit wurde die Kinetik von zwei Ca2-plus-aktivierten Membranproteinen untersucht: zum einen des endogenen Ca2-plus-aktivierten Chloridkanals der Xenopus-Oozytenmembran, zum anderen des heterolog in Oozyten exprimierten Na-plus-Ca2-plus-Austauschers NCX1, kloniert aus dem Meerschweinchen-Herzen. Der Ca2-plus-aktivierte Chloridkanal wird durch intrazelluläres Ca2-plus im submikromolaren Konzentrationsbereich (KD = 0.5 µMCa2-plus) aktiviert und hat eine hohe Permeabilität für Chloridionen. In der ausgereiften Eizelle spielt er eine wichtige Rolle bei der Ausbildung des Fertilisationspotentials und verhindert durch eine Depolarisation der Membran eine Polyspermie. Der Na-plus-Ca2-plus-Austauscher ist in der Herzmuskelzelle für die Ausbildung des Exzitations- Kontraktions-Zyklus von Bedeutung, indem er für die Aufrechterhaltung des Ca2-plus- Gradienten (freies Ca2 intrazellulär ungefähr gleich 100 nm, extrazellulär ungefähr gleich 2 mM) über die Plasmamembran verantwortlich ist. Unter physiologischen Bedingungen transportiert der Na-plus- Ca2-plus-Austauscher ein Ca2-plus-Ion im Austausch gegen drei Na-plus-Ionen aus der Zelle hinaus, und nutzt somit den Na-plus-Gradienten neben dem Membranpotential als treibende Kraft. Als Messmethode wurde die Patch-Clamp-Technik in der inside-out-Makro-Patch- Konfiguration verwendet. Die Patch-Clamp-Technik erlaubt definierte ionale Bedingungen auf beiden Seiten der Membran. Cytoplasmatische Ca2-plus-Konzentrationssprünge wurden zum einen durch Lösungswechsel, insbesondere aber durch die Photolyse von DM-Nitrophen, einem photolabilen Ca2-plus-Chelator, hervorgerufen. Die Photolyse von DM-Nitrophen erlaubte, im Vergleich zum Lösungswechsel, sehr schnelle Ca2-plus- Konzentrationssprünge (Ca2-plus-Freisetzungsrate mindestens 38000 s-1). Die kinetischen Untersuchungen am Ca2-plus-aktivierten Chloridkanal haben neue, über bisherige aus dem Lösungswechselexperiment bekannte hinausgehende, Erkenntnisse ergeben: Nach einem schnellen Ca2-plus-Konzentrationssprung geht dem Signalanstieg auf einen stationären Wert eine deutlich schnellere Verzögerungsphase (lag-phase) voraus. Sowohl der Signalanstieg als auch die Verzögerungsphase zeigen eine starke Ca2-plus-Abhängigkeit, sind aber nur sehr schwach spannungsabhängig. Die Ergebnisse deuten darauf hin, dass der Signalanstieg den spannungsabhängigen Ca2-plus-Bindungs-/Dissoziationsschritt von mindestens zwei Ca2-plus-Ionen widerspiegelt, während das spannungsunabhängige Kanalöffnen/ -Schließen durch die Verzögerungsphase repräsentiert wird. Bei Spannungssprungexperimenten mit hoher Zeitauflösung konnte eine schnelle Inaktivierung nach einer Depolarisation der Membran gesehen werden, die in Gegenwart von sättigenden intrazellulären Ca2-plus-Konzentrationen zu einer Einwärtsgleichrichtung der Strom-Spannungskennlinie des stationären Stroms führt. Mit diesen Erkenntnissen konnte ein Reaktionsmodell für den Ca2-plus-aktivierten Chloridkanal aufgestellt werden, mit dem sich die experimentellen Daten simulieren ließen. Die heterologe Expression des Na-plus-Ca2-plus-Austauschers in Oozyten hat zu einem deutlich verbesserten Signal-Rausch-Verhältnis im Vergleich zu früheren Messungen am nativen Austauscher in Cardio-Myocyten-Membranen geführt. Mit Hilfe der Photolyse von DM-Nitrophen konnte erstmals eine vollständige Ca2-plus- und Spannungsabhängigkeit des vorstationären Einwärtsstroms, hervorgerufen durch einen cytoplasmatischen Ca2-plus-Konzentrationssprung, durchgeführt werden. Sowohl im Ca2-plus-Ca2-plus- als auch im Na-plus-Ca2-plus- Austauschmodus zeigt sich ein transientes Einwärtsstromsignal (Anstieg messtechnisch nicht auflösbar), das sehr schnell relaxiert. Im Ca2-plus-Ca2-plus-Austauschmodus zeigt sich nur ein transientes Stromsignal (kein Nettoladungstransport im stationären Zustand), während im Na-plus-Ca2-plus-Austausch sich ein stationärer Einwärtsstrom einstellt. Das transiente Stromsignal hat eine deutliche Ca2-plus-Abhängigkeit sowohl für den Spitzenstrom (KM = 30.9 ± 3.0 µM im Na-plus-Ca2-plus-Austausch, KM = 57 ± 10 µM im Ca2-plus- Ca2-plus-Austausch) als auch für die Geschwindigkeitskonstante 1/t des Signalabfalls (KM = 98.5 ± 21.3 µM im Na-plus-Ca2-plus-Austausch, KM = 76 ± 11 µM im Ca2-plus-Ca2-plus-Austausch) gezeigt. Die Relaxation des Stromtransienten erfolgt sowohl im Ca2-plus-Ca2-plus- als auch im Na-plus-Ca2-plus-Austausch mit einer maximalen Geschwindigkeitskonstanten von ungefähr gleich 10000 s -1 nach sättigenden Ca2-plus-Konzentrationssprüngen. Der Signalabfall hat sich über den gesamten untersuchten Ca2-plus-Konzentrationsbereich als spannungsunabhängig herausgestellt, während der Spitzenstrom bei positiven Membranpotentialen deutlich abnimmt. Dies führt zu einer Spannungsabhängigkeit der verschobenen Ladung (Integral des transienten Stromsignals) im Ca2-plus-Ca2-plus-Austausch. Aus diesen Erkenntnissen konnte für den Ca2-plus- Translokationszweig (im Rahmen eines konsekutiven Transportmodells) folgendes Reaktionsschema aufgestellt werden: Einem spannungsunabhängigen, sehr schnellen Ca2-plus- Bindungs/-Dissoziationsschritt (diffusionskontrolliert) auf der intrazellulären Membranseite folgt ein ebenfalls spannungsunabhängiger, aber ratenlimitierender Schritt (intrazellulärer Okklusionsschritt, asymmetrische Raten: 10000 vs. 1000 s-1). Der nachfolgende Ca2-plus-Translokationschritt muss sehr hohe Hin- und Rückraten aufweisen (ungefähr gleich 20000 s-1). Die Ca2-plus-Dissoziation/-Bindung auf der extrazellulären wird als sehr schnell (diffusionskontrolliert) und spannungsunabhängig angenommen. Weitergehende Einblicke haben der Sr2-plus-Ca2-plus- und der Ba2-plus-Ca2-plus-Austausch geliefert. Während der Sr2-plus-Ca2-plus-Austausch nahezu das gleiche Verhalten wie der Ca2-plus-Ca2-plus-Austausch gezeigt hat, konnte nach einem intrazellulären Ca2-plus-Konzentrationssprung im Ba2-plus-Ca2-plus-Austausch erstmals eine zusätzliche langsame Phase im Abklingen des transienten Einwärtsstromsignals beobachtet werden. Das transiente Signal hat im Vergleich zum Ca2-plus-Ca2-plus-Austausch eine signifikant höhere Ladungsverschiebung aufgewiesen. Dies deutet auf einen zusätzlichen elektrogenen Reaktionsschritt hin (extrazelluläre Ca2-plus-Okklusion). Weitere elektrogene Schritte müssen im Na-plus-Translokationszweig (Na-plus-Bindungs- und Na-plus-Translokationsschritt) liegen. Mit den aus diesen Erkenntnissen aufgestellten Reaktionsschemata ließen sich die experimentellen Daten erfolgreich simulieren. Die Gesamttransportrate im Na-plus-Ca2-plus- Austausch liegt demnach bei ungefähr gleich 1000 s-1 bei Raumtemperatur und stimmt damit mit Literaturwerten von mehreren 1000 s-1 bei physiologischer Temperatur überein.
A detailed understanding of how potassium channels function is crucial e. g. for the development of drugs, which could lead to novel therapeutic concepts for diseases ranging from diabetes to cardiac abnormalities. An improved understanding of channel structure may allow researchers to design medication that can restore proper function of these channels. This is particularly important for KCNQ channels, since four out of five family members are involved in human inherited disease. In addition to structure and function relationships the determinants which govern assembly of KCNQ subunits are decisive to understand the physiological role of the KCNQ channel family members. Many details of KCNQ channel assembly remain incompletely understood. Previous work has shown that the subunit-specific heteromerisation between KCNQ subunits is determined by a ~115 amino acid-long subunit interaction domain (si) within the C-terminus (Schwake et al., 2003). Recently, Jenke et al. (2003) proposed that the C-terminal domains in eag and erg K+ channels act as sites which drive tetramerization. From their ability to form coiled coils, these domains were referred to as tetramerizing coiled-coil (TCC) sequences. Jenke et al. also pointed out that KCNQ channels contain bipartite TCC motifs within their C-termini, exactly within the si domain, which is responsible for the subunit-specific interaction pattern. The first part of this thesis was dedicated to determine the individual role of these TCC domains on homomeric and heteromeric channel formation in order to further characterize the molecular determinants of KCNQ channel assembly. In the second part of this thesis cystein-scanning mutagenesis was employed, followed by thiol-specific modification using MTS reagents to screen more than 20 residues in the S3-S4 linker region and in the S4 transmembrane domain of the KCNQ1 channel to gain information about residue accessibility, the functional effects of thiol-modifying reagents (MTSES), and effects of crosslinking selected pairs of Cys residues by Cd+ ions, which could be used for testing model predictions based upon known Kv channel structures from the literature. According to homology modelling based on the Kv1.2 structure it was attempted to determine the proximity of individual residues from different transmembrane segments using the metal bridge approach (crosslinking by Cd+ ions). This led us to derive structural constraints for interactions between the S4 voltage sensor and adjacent transmembrane segments of KCNQ1. Similar studies have previously been performed on the Shaker K+ channel, which has served as a paradigm for structure-function research of voltage-gated K+ channels for a long time, but little is known for KCNQ channels concerning their similarity to published K+ channel structures.
The present work wishes to contribute with information on two members of the primary active transporter group, which differ both in structure and function: Wilson Disease Protein which uses the energy released by ATP hydrolysis to transport copper across cell membranes, and Proteorhodopsin, which uses the energy of light to build up a proton gradient across the bacterial cell membrane, both heterologously expressed in Xenopus laevis oocytes. The surface detection experiments using HA-tagged WNDP confirm the proposed topology of WNDP. The HA-tag per se does not interfere with the function of WNDP, as shown for WNDP HA56 by ATP-dependent phosphorylation after expression in Sf9 cells. Sequence modifications within the WNDP HA56 template-construct reveal some interesting features: i) the N-terminal domain, which contains the 6 metal binding sites, is not necessary for plasma membrane targeting; ii) elevated surface expression of WNDP was observed when the carboxy terminus containing the tri-Leu motif is missing, which suggests that this motif might be involved in the retrieval of the protein from the plasma membrane; iii) the mutations TGE>AAA (proposed to lock the protein in the E1 conformation and lead to constitutive plasma membrane localisation) and D1027A (phosphorylation deficient) did not interfere with the surface localisation of the protein; iv) the mutations CPC>SPS (copper transport deficient) and H1069Q (phosphorylation deficient, most common mutation in Wilson Disease) reduced plasma membrane expression to less then 50%. Western blot analysis shows that the overall expression level of all constructs is similar to that of the reference construct WNDP HA56. These findings suggest that motifs involved in copper binding and catalytic activity do not interfere with plasma membrane targeting of WNDP in Xenopus oocytes. However, the H1069Q mutation could interfere with the distribution of WNDP protein within the cells. In the case of Proteorhodopsin, data presented in this work support earlier observations according to which proteorhodopsin can operate as an outwardly and inwardly directed light-driven ion pump. The residues proposed to play the roles of proton donor (E108) and acceptor (D97) are important for proton translocation. In the absence of an anionic residue at position 97 no outward pumping takes place, but inward charge translocation may occurs under appropriate conditions. An M-like state similar to that known from BR detectably accumulates under neutral pH conditions or under conditions where reprotonation of the Schiff base from the cytoplasmic side is slowed down, as in case of the mutants at position 108. Under acidic conditions PR pumps inwardly under the concerted action of pH and transmembrane potential. The experiments performed in parallel with PR and BR wild-types brought not only interesting information about similarities and differences between the two retinylidene ion pumps, but also led to the observation that the life-time of the M state in BR wild-type can be extended in addition to hyperpolarising transmembrane potentials also by extracellular acidic pH, when the proton gradient through the cell membrane is directed opposite to the ion transport (i.e. when the electrochemical gradient opposing the direction of proton transport increases). Direct photocurrent measurements of HA-tagged PR and BR have shown that the inserted tag may interfere with the functionality of the protein. Next to E108 and D97 in PR other residues in the vicinity of the retinal binding pocket contribute to the translocation of protons, as exemplified by the mutant L105Q: additionally to changing the absorption maximum of the protein, this mutant is a less effective proton pump than the wild type. The example of PR suggests that transduction of light energy by – and reaction mechanisms of retinylidene ion pumps have not been entirely deciphered by the extensive studies of bacteriorhodopsin.
Group III presynaptic metabotropic glutamate receptors (mGluRs) play a central role in regulating presynaptic activity through G-protein effects on ion channels and signal transducing enzymes. Like all Class C G-protein coupled receptors, mGluR8 has an extended intracellular C-terminal domain (CTD) presumed to allow for modulation of downstream signaling. To elucidate the function and modulation of mGluR8, yeast two-hybrid screens of an adult rat brain cDNA library were performed with the CTDs of mGluR8a and 8b (mGluR8-C) as baits. Different components of the sumoylation cascade (ube2a, sumo-1, Pias1, Pias gamma and Pias xbeta) and some other proteins were identified as mGluR8 interacting proteins. Binding assays using recombinant GST-fusion proteins confirmed that Pias1 interacts not only with mGluR8-C, but all group III mGluR CTDs. Pias1 binding to mGluR8-C required a region N-terminally to a consensus sumoylation motif and was not affected by arginine substitution of the conserved lysine K882 within this motif. Co-transfection of fluorescently tagged mGluR8a-C, sumo-1 and enzymes of the sumoylation cascade into HEK 293 cells showed that mGluR8a-C can be sumoylated in cells. Arginine substitution of lysine K882 within the consensus sumoylation motif, but not of other conserved lysines within the CTD, abolished in vivo sumoylation. The results are consistent with post-translational sumoylation providing a novel mechanism of group III mGluR regulation.
The Na+,K+-ATPase was discovered more than 50 years ago, but even today the pumpcycle and its partial reactions are still not completely understood. In this thesis, Voltage Clamp Fluorometry was used to monitor the conformational changes that are associated with several electrogenic partial reactions of the Na+,K+-ATPase. The conformational dynamics of the ion pump were analyzed at different concentrations of internal Na+ or of external K+ and the influences on the conformational equilibrium were determined. To probe the effect of the internal Na+ concentration on the Na+ branch of the ion pump, oocytes were first depleted of internal Na+ and then loaded with Na+ using the epithelial sodium channel which can be blocked by amiloride. The conformational dynamics of the K+ branch were studied using different external K+ concentrations in the presence and in the absence of external Na+ to yield additional information on the apparent affinity of K+. The results of our Voltage Clamp Fluorometry experiments demonstrate that lowering the intracellular concentration of Na+ has a comparable effect on the conformational equilibrium as increasing the amount of K+ in the external solution. Both of these changes shift the equilibrium towards the E1/E1(P) conformation. Furthermore, it can be shown that the ratio between external Na+ and K+ ions is also a determinant for the position of the conformational equilibrium: in the absence of external Na+, the K+ dependent shift of the equilibrium towards E1 was observed at a much lower K+ concentration than in the presence of Na+. In addition, indications were found that both external K+ and internal Na+ bind within an ion well. Finally, the crucial role of negatively charged glutamate residues in the 2nd extracellular loop for the control of ion-access to the binding sites could be verified.
Project I: The progression of rod and cone degeneration in retinally degenerate (rd) mice ultimately results in a complete loss of photoreceptors and blindness. The inner retinal neurons survive and several recent studies using genetically targeted, light activated channels have made these neurons intrinsically light sensitive. We crossbred a transgenic mouse line expressing channelrhodopsin2 (ChR2) under the control of the Thy1 promoter with the Pde6b(rd1) mouse, a model for retinal degeneration (rd1/rd1). Approximately 30-40% of the ganglion cells of the offspring expressed ChR2. Extracellular recordings from ChR2-expressing ganglion cells in degenerated retinas revealed their intrinsic light sensitivity which was approximately 7 log U less sensitive than the scotopic threshold and approximately 2 log U less sensitive than photopic responses of normal mice. All ChR2-expressing ganglion cells were excited at light ON. The visual performance of rd1/rd1 mice and ChR2 rd1/rd1 mice was compared. Behavioral tests showed that both mouse strains had a pupil light reflex and they were able to discriminate light fields from dark fields in the visual water task. Cortical activity maps were recorded with optical imaging. The ChR2rd1/rd1 mice did not show a better visual performance than rd1/rd1 mice. In both strains the residual vision was correlated with the density of cones surviving in the peripheral retina. The expression of ChR2 under the control of the Thy1 promoter in retinal ganglion cells does not rescue vision. Project II: Lentiviral vectors are becoming the vector of choice for transgene delivery into cells due to their ability to infect non- dividing cells and stably integrate the gene into the genome of the host. Two different viral vector systems, namely HIV-1 and SIV and three different viral vectors PLECYT, PHRCMVChR2 of HIV-1 family and PBjChR2 of SIV were used in this study. The efficiency of the vectors was analyzed by applying them onto the retinal explants in culture and checking the transgene expression. The transgene in the PLECYT lentiviral vector was driven by the EF1A promoter. Upon administration of 5.2 X 106 infectious units of PLECYT viral vector suspension onto the retinal explant resulted in the transduction of retinal ganglion cells. Very few other retinal neurons were found transduced. In the case of PHRCMVChR2, approximately 5 X 105 TU/ml of the vector was used and resulted in the transduction of different neuronal subtypes. Many amacrine cells, ganglion cells and Müller cells were found expressing the transgene. For PBjChR2, 5.6 X104 TU/ml was used which resulted in Müller cell- specific transduction. Very few or no other retinal neurons were found transduced. This study demonstrates the transduction efficiency of different viral vectors on the retinal neurons in vitro. An interesting observation on these viral vectors is their altered tropism. The glycoprotein of the virus is critical for determining their tropism and in this study, all the viral vectors generated were pseudotyped with VSVG, which confers a broad non-specific spectrum of infection. However, analyzing the transgene expression, the viral vectors differ from one another and show remarkable difference in their transduction pattern. To list a few factors that might possibly responsible for the drastic transduction difference exerted by the viral vectors include; 1. Promoters used to drive the transgene expression. 2. HIV or SIV component of the vector in combination with the promoter 3. Titre of the vector used and 4. Other factors like pH and serum used in the study. Therefore optimizing the viral vectors and generating high titers would increase the efficiency and cell-type specific expression of the transgene.
Obwohl die Kristallstrukturen der CytochromcOxidase aus RinderherzMitochondrien und dem Bodenbakterium P. denitrificans bekannt sind und die Funktionsweise des Enzyms mit Hilfe zahlreicher Methoden bereits intensiv untersucht wurde, wird nach wie vor kontrovers diskutiert, an welcher Stelle im katalytischen Zyklus wieviele Protonen aufgenommen bzw. gepumpt werden und über welchen der beiden Protoneneintrittspfade dies geschieht. Ziel der vorliegenden Arbeit war es, diesen Fragestellungen mit Hilfe von elektrischen Messungen nachzugehen, um dann ein genaueres Bild von der mechanistischen Funktionsweise des Enzyms zu erhalten. Hierzu wurden Teilschritte des katalytischen Zyklus der CytochromcOxidase aus P. denitrificans genauer untersucht. Dies gelang durch Spannungsmessungen an der schwarzen Lipidmembran mit Ru II (2,2'bipyridyl) 3 Cl 2 (Rubpy) als lichtinduzierbarem Einelektronendonor. Es konnte gezeigt werden, daß ausgehend vom vollständig oxidierten Zustand O nach Lichtanregung ein Elektron von Rubpy auf die Oxidase übertragen und anschließend vom CuA zum Häm a mit einer Zeitkonstanten von » 20 µs transportiert wird. Zeitaufgelöste spektroskopi sche Messungen deuten darauf hin, daß das Elektron auf dem Häm a verbleibt. Die Reduktion dieses Kofaktors führt zu einer Protonenaufnahme über den KWeg mit einer Zeitkonstanten von » 175 µs. Nimmt man an, daß sich Häm a in der Mitte des Dielektrikums befindet (Hinkle und Mitchell, 1970), so deuten die relativen Amplituden der beiden Phasen an, daß etwa 0.8 Protonen aufgenommen werden, in sehr guter Übereinstimmung mit (Capitanio et al., 2000). Aus MehrfachblitzExperimenten unter anaeroben Bedingungen, ausgehend vom OZustand, konnten erste Erkenntnisse über den E ® R Übergang gewonnen werden, nämlich daß hierbei ein Prozeß mit einer Zeitkonstanten von ca. 1.1 ms auftritt und daß sowohl K als auch DWeg an diesem Teilschritt des katalytischen Zyklus beteiligt sind. Da mit der MehrfachblitzMethode aber immer ein Gemisch aus verschiedenen Zuständen entsteht, war es nicht möglich, quantitative Aussagen über die Zahl der transportierten Ladungen zu treffen. Aus diesem Grund wurde eine Möglichkeit gesucht, den EZustand in hoher Ausbeute mit ausreichender Stabilität herzustellen, um dann ein Elektron zu übertragen. Dies gelang durch Darstellung des OxoferrylZustandes F mit Hilfe von H 2 O 2 und anschließende Zweielektronenreduktion durch CO. Die Übertragung von einem Elektron auf den so gebildeten EZustand lieferte 3 Phasen im Spannungssignal mit Zeitkonstanten von » 25 µs, » 200 µs und » 1.5 ms. Die relativen Amplituden dieser Phasen und die Ergebnisse von K und DWegMutanten legen nahe, daß nach Aufnahme des 2. Elektrons vermutlich ein Proton über den KWeg aufgenommen und anschließend 1 Proton über den DWeg gepumpt wird. Es konnte somit zum ersten Mal gezeigt werden, daß bereits während des reduktiven Teils (O ® R) des katalytischen Zyklus ein Proton von der intrazellulären zur extrazellulären Seite transportiert wird und zwar ohne daß unmittelbar vorher die Sauerstoffreduktion stattgefunden haben muß. Erste Experimente zum P ® F Übergang lassen sich so deuten, daß mit Aufnahme des 3. Elektrons ein Proton zum binuklearen Zentrum transportiert und mindestens 1, wenn nicht gar 2 Protonen durch das Enzym gepumpt werden. Hier sind noch weitere Experimente nötig, um die genaue Zahl der transportierten Ladungen und die für die einzelnen Protonenbewegungen verwendeten Protoneneintrittspfade zu bestimmen. Messungen zum F ® O Übergang schließlich zeigten, daß nach dem CuA ® Häm a Elektro nentransfer mit einer Zeitkonstanten von ca. 25 µs vermutlich 1 Proton über den DWeg bis zu den Hämen transportiert (t » 270 µs) und anschließend ein Proton ebenfalls über den DWeg gepumpt wird (t » 1.5 ms). Aus den gewonnenen Daten wurde ein neuer Mechanismus für die Sauerstoffreduktion in der ParacoccusCOX entwickelt. Dieser beruht auf dem von Mitchell und Rich postulierten Elektroneutralitätsprinzip (Mitchell und Rich, 1994) und ist stark an das von Michel vorgeschlagene Modell (Michel, 1998; Michel, 1999) angelehnt. Zur Klärung der Fragen, ob sich bakterielles und RinderzEnzym eventuell in ihrem Mechanismus unterscheiden oder ob nicht eventuell ein Proton während des O ® E Übergangs gepumpt wird (allerdings nur, wenn unmittelbar vorher die Sauerstoffreduktion durchlaufen wurde), sind u.a. noch intensivere Untersuchungen des P ® F Teilschrittes notwendig. Im Rahmen dieser Arbeit wurden weiterhin 2 verschiedene Kobaltkomplexe auf ihre Eignung als lichtinduzierbare Sauerstoffdonatoren (cagedSauerstoff) für die COX untersucht. Hierbei stellte sich heraus, daß beide Verbindungen ungeeignet sind, da sie entweder instabil sind ((µsuperoxo)bis[pentaammincobalt(III)]) oder Nebenreaktionen mit dem Protein eingehen ((µperoxo)(µhydroxo)bis[bis(bipyridyl)cobalt(III)]). Abschließend wurde der Einfluß von Zn 2 Ionen auf elektrogene Schritte im katalytischen Zyklus genauer erforscht. Es wurde deutlich, daß Zn 2 bakterielle COX von beiden Seiten inhibieren kann, wobei die Bindestelle(n) auf der intrazellulären Seite im Gegensatz zur extrazellulären Seite hochaffin ist/sind. Die elektrischen Messungen deuten darauf hin, daß hierbei sowohl D als auch KWeg blockiert werden, wobei die exakte Position der Metallbindestelle(n) noch zu klären ist.