Refine
Year of publication
Document Type
- Doctoral Thesis (36)
Has Fulltext
- yes (36)
Is part of the Bibliography
- no (36)
Keywords
- Cytochromoxidase (2)
- Paracoccus denitrificans (2)
- Pichia pastoris (2)
- Atmungskette (1)
- Aufreinigung (1)
- Azide (1)
- Bindestelle (1)
- Biophysik (1)
- Biosensorik (1)
- Black Lipid Membrane (1)
Institute
Die Verarbeitung von Informationen im zentralen Nervensystem beruht auf dem Zusammenspiel von erregender und hemmender Neurotransmission. Die Übertragung von Signalen zwischen Neuronen erfolgt chemisch über die Ausschüttung von Neurotransmittern an spezialisierten Kontaktstellen, den Synapsen. Glyzin und gamma-Aminobuttersäure (GABA) sind die bedeutendsten inhibitorischen Neurotransmitter im zentralen Nervensystem von Säugern, welche Rezeptoren vom Glyzin- (GlyR) und GABAA-Typ (GABAAR) aktivieren. Diese ligandengesteuerten Ionenkanäle sind in postsynaptischen Membranen angereichert und mit intrazellulären Proteinen assoziiert. Die Rekrutierung der Rezeptoren in postsynaptischen Domänen ist ein an das zytoplasmatisch lokalisierte Protein Gephyrin gekoppelter Prozess. So bindet Gephyrin spezifisch an die intrazelluläre Domäne der beta-Untereinheit des GlyR (GlyR beta) und bildet für die Verankerung des Rezeptors ein gerüstartiges Netzwerk unterhalb der synaptischen Membran. Die gezielte Inaktivierung des Gephyrin-Gens führt in Mäusen zu einem postnatal letalen Phänotyp und zu dem Verlust der synaptischen Anreicherung des GlyR und bestimmter GABAA-Rezeptoren auf zellulärer Ebene. Gephyrin ist ein 93 kDa großes Protein, das nicht nur im zentralen Nervensystem (ZNS), sondern auch in anderen Organen wie Leber und Niere exprimiert wird, in denen es an der Synthese des Molybdän-Kofaktors von Oxido-Reduktasen beteiligt ist. Das Gephyrin-Protein wird durch 30 Exons codiert, von denen zehn als sogenannte Kassetten alternativ gespleißt werden können. Die bestuntersuchte Spleißvariante besitzt 736 Aminosäuren und ist in eine N- und eine C-terminale Domäne (Aminosäuren 1-181 bzw. 318-736) sowie eine zentrale Linker-Domäne unterteilt. Die N- und die C-terminalen Bereiche von Gephyrin sind den Proteinen MogA und MoeA aus E. coli homolog und werden daher auch als G-Domäne (N-terminal) bzw. E-Domäne (C-terminal) bezeichnet. In kristallographischen Untersuchungen wurde gezeigt, dass die G- und E-Domänen zur Tri- bzw. Dimerisierung befähigt sind. Diese speziellen Oligomerisierungseigenschaften der beiden Gephyrindomänen bilden wahrscheinlich die Grundlage für die Entstehung von Gephyrin-Clustern sowie eines hexagonalen Gephyrin-Gerüstes. Dieses Gerüst stellt den Verknüpfungspunkt zwischen Rezeptoren und dem Zytoskelett dar und ermöglicht somit die effiziente Clusterbildung und die zielgerichtete Anordnung einer großen Anzahl inhibitorischer Rezeptoren. In der vorliegenden Arbeit sollten die Rolle dieser beiden Domänen bei der Bildung membranassoziierter Gephyrinaggregate und die molekularen Mechanismen der Clusterbildung des Gephyrinmoleküls untersucht werden. Zu diesem Zweck wurden durch zielgerichtete Mutagenese unterschiedliche Gephyrin-Mutanten hergestellt, um die Fähigkeit der Oligomerisierung der G- und E-Domäne gezielt zu modifizieren. Dadurch sollte die Bedeutung der Oligomerisierung hinsichtlich der Aggregat- bzw. Clusterbildung untersucht werden. Außerdem sollten die Wechselwirkungen zwischen Gephyrin und anderen Proteinen und deren Einfluss auf die synaptische Lokalisation analysiert werden. Für diese Untersuchungen wurden auf der Basis von Röntgenstruktur-Daten spezifische Aminosäurereste an den bei der Oligomerisierung beteiligten Kontaktstellen ausgetauscht. In der G-Domäne wurden zu diesem Zweck vier separate Aminosäuren des Trimer-Interface durch Arginin ersetzt (GephRRRR). Analog hierzu wurden in der EDomäne einzelne Aminosäuren durch Arginin bzw. Glutamat substituiert (GephRER), um dadurch eine Dimersierung zu verhindern. Für die Kassette C5’ wird angenommen, dass deren Vorhandensein die Interaktion zwischen Gephyrin und GlyR beeinträchtigt, wodurch GlyR aus GABAergenen Synapsen ausgeschlossen wird. Daher wurde der Einfluss dieser Gephyrin-Spleißvariante (GephC5’), die zu einer Peptidinsertion innerhalb der G-Domäne führt, und einer Gephyrin-Mutante (Gephmut), die den Verlust der Wechselwirkung mit dem GlyR bedingt, auf die Aggregatbildung von Gephyrinoligomeren untersucht. Bei dem Konstrukt Gephmut wurden, basierend auf Daten von Röntgenstrukturuntersuchungen, neun Aminosäuren (713-721) am Cterminalen Ende der E-Domäne durch den homologen Bereich des bakteriellen MoeA Proteins aus E. coli ersetzt. Zunächst wurden die einzelnen isolierten Domänen mittels Gelfiltration hinsichtlich ihres Oligomerisierungsverhaltens untersucht. Die Mutationen wurden hierzu in verkürzte Proteine eingeführt, bei denen nur die G- bzw. die E-Domäne exprimiert wurden. Diese Konstrukte wurden daher als GRRRR, GC5’ bzw. ERER und Emut bezeichnet. Bei diesen zeigte sich, dass die G-Domäne des Gephyrin-Wildtyps zu trimeren Proteinkomplexen oligomerisiert. Im Gegensatz hierzu war die Mutante GRRRR nicht in der Lage, Trimere zu bilden. Das Einfügen der C5’-Kassette führte ebenfalls zu einer Störung der Trimerisierung. Gelfiltrationsexperimente mit der E-Domäne ergaben, dass die mutierte Domäne ERER, im Gegensatz zum Wildtyp-Konstrukt, keine Dimere ausbildet. Bisherige Studien haben jedoch gezeigt, dass das Emut Polypeptid zur Dimerisierung befähigt ist. Das Oligomerisierungsverhalten des kompletten Gephyrin-Proteins wurde mittels blauer nativer Gelelektrophorese (BN-PAGE) analysiert. Für die hier beschriebenen Untersuchungen mit BN-PAGE wurde rekombinantes Gephyrin in Xenopus laevis Oozyten heterolog exprimiert. Die Analyse ergab, dass Wildtyp Gephyrin nativ als Hexamer vorliegt, welches durch ansteigende Konzentrationen des Detergenzes Natriumdodecylsulfat (SDS) in Trimere, Dimere und Monomere zerfällt. Sowohl GephRRRR und GephC5’ liegen nativ fast ausschließlich als Dimere vor, während GephRER nur trimere Aggregate formt. Die entsprechende Doppelmutante mit Mutationen in Gund E-Domäne war wie erwartet nur noch als Monomer existent. Die als Kontrolle eingesetzte Glyzinrezeptor-Bindungsmutante Gephmut bildete, ebenso wie der Wildtyp, Hexamere aus. Daraus folgt, dass die Oligomere der G- bzw E-Domäne Zwischenprodukte der Hexamerbildung darstellen. Die Analyse der Oligomerisierungseigenschaften der Mutanten wurde nachfolgend in humanen embryonalen Nierenzellen (HEK 293T) untersucht. Nach heterologer Expression von Wildtyp Gephyrin in HEK 293T-Zellen formen sich große, charakteristische Gephyrinaggregate. Die Oligomerisierungs-Mutanten GephRRRR, GephRER und GephC5’ aggregierten jedoch nicht, sondern waren diffus im Zytoplasma verteilt. Die wiederum als Kontrolle eingesetzte Bindungsmutante Gephmut hingegen wies eine normale Aggregation auf. Diese Ergebnisse bestätigen die grundlegende Rolle der Oligomerisierung von G- und E- Domänen für die Aggregatbildung von Gephyrin. Mittels GST-Pulldown und Kolokalisationsanalysen in HEK Zellen wurde die Wechselwirkung der Gephyrinmutanten mit der GlyR beta, dem Motorkomplexprotein Dynein light chain-1 (Dlc-1) und dem Guanin-Nukleotid-Austauschfaktor Collybistin (Cb) untersucht. Beide Ansätze weisen darauf hin, dass die Trimerisierung der G-Domäne an der Interaktion von Gephyrin mit Dlc-1 und die Dimerisierung der E-Domäne bei der Bindung an GlyR beta und Cb beteiligt ist. Die Mutante Gephmut zeigte in beiden Fällen einen totalen Verlust der Bindungsfähigkeit sowohl an das GlyR beta Bindungsmotiv als auch an Cb. Der Einbau der C5’ Kassette in Gephyrin scheint jedoch nicht dessen Bindung an den GlyR zu beeinflussen. Für die Analyse der Clusterbildung und des zielgerichteten Transports in Neuronen wurden Wildtyp und mutiertes Gephyrin in hippocampalen und spinalen Primärkulturen der Ratte exprimiert. Zur Überprüfung einer synaptischen Lokalisation wurde Gephyrin gemeinsam mit dem vesikulären inhibitorischen Aminosäure-Transporter (VIAAT), einem präsynaptischen Marker-Protein, detektiert. In beiden Kulturen wies Gephyrin eine punktartige Verteilung in den Neuriten auf und wurde gezielt an Synapsen angereichert. Im Kontrast dazu zeigten alle Oligomerisierungsmutanten, GephRRRR, GephC5’ und GephRER keine Ausbildung von Clustern sondern eine diffuse Verteilung im Zellkörper und in Dendriten. Das Konstrukt Gephmut wies jedoch Clusterbildung und eine punktförmige Verteilung auf. Diese Daten belegen, dass die Oligomerisierung der G- wie auch der E-Domänen für die Clusterbildung und synaptische Lokalisation von Gephyrin unerlässlich ist. Die Wechselwirkung mit dem GlyR und/oder Collybistin ist ebenfalls für die Anreicherung in der Synapse erforderlich, nicht jedoch für die Bildung der Gephyrin-Cluster. Die dargestellten Ergebnisse belegen die Rolle der spezifischen Oligomerisierungseigenschaften der G- und E-Domäne für die Ausbildung des hexagonalen Gephyringerüstes und dessen grundlegende Bedeutung für die spezifische Anreicherung von Gephyrin an inhibitorischen Synapsen in Neuronen.
Lichtgesteuerte Channelrhodopsine (ChR) haben im letzten Jahrzehnt neue Wege zur Untersuchung neurophysiologischer Zusammenhänge eröffnet. Die ersten grundlegenden Charakterisierungen von Channelrhodpsin-1 und Channelrhodopsin-2 (ChR-1 und ChR-2) zeigten bereits die hohe Selektivität dieser Ionenkanäle für Protonen gegenüber monovalenten und divalenten Kationen und veranschaulichten die Dominanz der einwärtsgerichteten gegenüber den auswärtsgerichteten Kationenströmen durch die Kanalpore (Einwärtsgleichrichtung) (Nagel et al., 2002; Nagel et al., 2003). Nach Expression von Channelrhodopsin können erregbare Zellen mit einem Ruhepotential von -60 mV durch Licht depolarisiert und Aktionspotentiale (AP’s) ausgelöst werden (Boyden et al., 2005; Li et al., 2005; Nagel et al., 2005b). Aufgrund der Einwärtsgleichrichtung von ChR nehmen die lichtaktivierten Ströme mit zunehmender Depolarisation ab, sodass die vollständige Ausbildung des AP’s nicht gestört wird. Dadurch wird ChR zu einem optimalen optogenetischen Werkzeug. Dennoch ist die Einwärtsgleichrichtung bisher wenig detailliert charakterisiert. Auch die zugrunde liegenden Mechanismen sind nicht genau bekannt. Im Rahmen dieser Arbeit konnte anhand von Patch-Clamp Messungen gezeigt werden, dass zwei Mechanismen die Rektifizierung des Kanalstroms durch ChR-2 hervorrufen: eine Spannungsabhängigkeit der Einzelkanalleitfähigkeit und eine Spannungsabhängigkeit der Offenwahrscheinlichkeit. Die Spannungsabhängigkeit der Einzelkanalleitfähigkeit ist von der Art der geleiteten Ionen abhängig und konnte experimentell über die Unterschiede der stationären IV-Kurve für H+ und Na+ bei symmetrischen Ionenkonzentrationen bewiesen werden. Des Weiteren wurden die Resultate für unterschiedliche Ionenbedingungen anhand eines Ionenbindungsmodells mit einem „3-Barrieren 2-Bindungsstellen“ Profil für die Kanalpore simuliert. Die Spannungsabhängigkeit der Offenwahrscheinlichkeit ist an eine Lichtadaption des ChR-2 Proteins gekoppelt. Diese Lichtadaption konnte mithilfe von repetitiven Messungen, d.h. Strommessungen mit mehrfachen kurzen Lichtblitzen (10 ns), gezeigt werden. Da die Lichtadaption wie auch die Kanalkinetik stark vom pH abhängig sind, ist anzunehmen, dass mechanistisch wichtige De- und Reprotonierungsreaktionen mit diesen Prozessen einhergehen. Ferner konnte über die Untersuchung der elektrophysiologischen Eigenschaften der ChR-2 Mutante E90A eine Region im Protein identifiziert werden, die höchstwahrscheinlich am Protonentransport durch die Kanalpore beteiligt ist. Die Mutante E90A wies eine verringerte Protonenleitfähigkeit und eine natriumabhängige Blockierung der lichtaktivierten Ströme bei niedrigem extrazellulären pH auf. Doppelbelichtungsexperimente mit gelbem oder kurzwelligem blauen Licht ergaben außerdem neue Hinweise auf die Identität einiger Intermediate des Photozyklus. Die vorgestellten Ergebnisse weisen darauf hin, dass die bisher beschriebene „lichtadaptierte“ Form, die als P480 Intermediat bezeichnet wird, eher einem P520 Intermediat entspricht. Außerdem konnte im Rahmen dieser Arbeit eine funktionelle Beteiligung des Intermediats P390, in dem die Schiff Base deprotoniert ist, am Photostrom von ChR-2 im Wildtyp-Protein gezeigt werden. Diese Beteiligung ist bisher nur für ChR-2 Mutanten bekannt (Bamann et al., 2010). Neben der Untersuchung der Kanaleigenschaften von ChR-2 wurde in dieser Arbeit auch der Frage nachgegangen, ob an den Photozyklus von ChR-2 eine vektorielle Protonenverschiebung über der Membran gekoppelt ist. Mithilfe der BLM-Technik und Patch-Clamp Messungen an elektrofusionierten HEK-293 Zellen (Zimmermann et al., 2006) konnte gezeigt werden, dass auch ohne elektrochemische Triebkraft lichtaktivierte Ströme (Pumpströme) zu beobachten sind, die einer vektoriellen Protonenverschiebung von 0,2 - 0,4 Ladungen pro Photozyklus entsprechen. Die Doppelbelichtungsexperimente und der vektorielle Protonentransport geben einen Einblick in den Zusammenhang zwischen Photozyklus und den funktionalen Zuständen des Kanals. Die Ergebnisse zeigen das komplexe Geflecht zwischen Spannungsabhängigkeit, der Kinetik und den offenen Zuständen und wurden in einem Modell zusammengefasst. Weiterhin wurde in dieser Arbeit eine stabile Zelllinie für die Expression von ChR-1 etabliert, die eine genauere Charakterisierung dieses Proteins möglich macht. Es konnte gezeigt werden, dass ChR-1 ebenso wie ChR-2 eine Kationenleitfähigkeit besitzt. Aus zeitaufgelösten Messungen wurde außerdem ermittelt, dass ChR-1 gegenüber ChR-2 eine verkürzte Zykluszeit besitzt. Die verkürzte Zykluszeit von ChR-1, die zu kleineren Gesamtstromamplituden im Vergleich zu ChR-2 führt und die vergleichsweise geringere Expression, v.a. in transienten Expressionssystemen, limitiert dessen neurophysiologische Anwendung. Zusammenfassend stellt die vorliegende Dissertation eine detaillierte biophysikalische Charakterisierung von Channelrhodopsinen dar, die neue Erkenntnisse über die mechanistische Kopplung der Kanalfunktion an den Photozyklus hervorbringt. Zudem kann sie eine Grundlage für die gezielte Suche nach Channelrhodopsin Mutanten bieten, deren Kinetik oder analeigenschaften für die neurophysiologische Anwendung optimiert sind.
The glycine receptor (GlyR) is the major inhibitory neurotransmitter receptor in spinal cord and brainstem. Heteropentameric GlyRs are clustered and anchored at inhibitory postsynaptic sites by the binding of the large intracellular loop between transmembrane domains 3 and 4 of the GlyRbeta subunit (GlyRbeta-loop) to the cytoplasmic scaffolding protein gephyrin. GlyRs are also cotransported with gephyrin along microtubules in the anterograde and retrograde direction due to the binding of gephyrin to microtubule-associated motor proteins. Additionally, GlyRs undergo lateral diffusion in the plasma membrane from extrasynaptic to synaptic sites and vice versa. Since its discovery, gephyrin has remained for many years the only binding partner interacting directly with the GlyRbeta subunit. In an attempt to elucidate further mechanisms involved in GlyR function and regulation at inhibitory postsynaptic sites, a proteomic screen for putative binding partners to the GlyRbeta loop was performed. Three proteins were identified as putative interactors. In this thesis, the interaction between these putative binding proteins and the GlyRbeta subunit was analyzed and characterized. Binding studies with glutathione-S-transferase fusion proteins revealed that all putative binding proteins, Syndapin (Sdp), Vacuolar Protein Sorting 35 (Vps35) and Neurobeachin (Nbea), interact specifically with the GlyRbeta loop. The Sdp family of proteins are F-BAR and SH3 domain containing proteins. Inmmunocytochemical experiments showed that SdpI as well as the isoforms SdpII-S and SdpIIL colocalize with the full-length GlyRbeta subunit in a mammalian cell expression system. In cultured spinal cord neurons, a partial colocalization of endogenous SdpI with several excitatory and inhibitory synaptic markers was demonstrated. Mapping experiments using deletion mutants narrowed the SdpI binding site down to 22 amino acids. Peptide competition experiments confirmed the specificity of the interaction between SdpI and this sequence of the GlyRbeta subunit. Point mutation analysis revealed a SH3-proline rich domain dependent interaction between SdpI and the GlyRbeta subunit, respectively. In addition, binding studies in mammalian cells showed that both splice variants of SdpII as well as SdpI interact with the GlyR scaffolding protein gephyrin. Although the SdpI and gephyrin binding sites do not overlap, protein competition studies revealed that interaction of the E-domain of gephyrin with the GlyRbeta loop interferes with SdpI binding. Since SdpI is a dynamin binding protein involved in vesicle endocytosis and recycling pathways, a possible function of SdpI in the regulation of GlyR synaptic distribution was investigated. Co-immunoprecipitation experiments confirmed a SdpI-GlyR association in the vesicle-enriched fraction of rat spinal cord tissue. Immunocytochemical studies of SdpI knock out mice showed that the clustering and distribution of GlyRs in the brain stem is unchanged. However, acute down-regulation of SdpI in rat spinal cord neurons by viral shRNA expression led to a reduction in the number and size of GlyR clusters, an effect that could be rescued upon shRNA-resistant SdpI overexpression. Further immunocytochemical analysis of the localization of gephyrin, the gamma2 subunit of the type A gamma-aminobutyric acid receptor (GABAARgamma2 subunit) and the vesicular inhibitory amino acid transporter (VIAAT) under SdpI knock-down conditions showed that both the number and average size of the gamma2-subunit containing GABAA receptor clusters were significantly reduced in spinal cord neurons. In contrast to GlyR and GABAARgamma2 immunoreactivity, the number and average size of gephyrin and VIAAT clusters were barely reduced upon SdpI downregulation. These results suggest that SdpI has a role in GlyR trafficking that can be compensated by other syndapin isoforms or other trafficking pathways. Furthermore, SdpI might be required for the clusters of GlyRs and gamma2-subunit containing GABAARs in spinal cord and brainstem. Vps35 is the core protein of the retromer complex, which mediates the endosome to Golgi apparatus retrieval of different types of receptors in mammals and yeast. Here, protein-protein interaction assays revealed for the first time that Vps35 interacts directly with the GlyRbeta loop as well as with gephyrin. The generation of specific Vps35 antibodies allowed to determine the distribution of this protein in the central nervous system. Immunocytochemical analyses revealed the presence of Vps35 in the somata and neurites of spinal cord neurons, suggesting a possible interaction of Vps35 with the GlyR under physiological conditions. Nbea is a BEACH domain containing, neuron-specific protein. Binding studies revealed a direct interaction between two regions of Nbea and the GlyRbeta loop. Immunocytochemical experiments confirmed a somatic and synaptic distribution of Nbea in primary cultures. In spinal cord neurons, a partial colocalization of Nbea with excitatory and inhibitory synaptic markers suggests a possible interaction of Nbea with the GlyR at inhibitory synaptic sites.
Die vorliegende Arbeit befasste sich in erster Linie mit der Regulation des P2X2 Rezeptors (P2X2R) durch Phosphoinositide (PI). P2X Rezeptoren sind durch extrazelluläres ATP aktivierte Kationenkanäle, die ubiquitär unter Vertebraten, v. a. im zentralen wie peripheren Nervensystem exprimiert werden. Bis heute sind 7 verschiedene Untereinheiten dieser Rezeptorfamilie bekannt, die nach homo- oder heterotrimerer Assemblierung unterschiedliche funktionelle Phänotypen ausbilden. Die P2X Rezeptoren sind an einer Vielzahl von physiologischen und pathophysiologischen Prozessen beteiligt. Für ihre Beteiligung am zellulären Signalgeschehen wurde in der Vergangenheit der Begriff der purinergen Signaltransduktion geprägt. PI4,5P2 ist ein zelluläres, an der Innenseite der Plasmamembran verankertes Phospholipid, dem zahlreiche, essentielle Funktionen zukommen. Dass es auch Signalfunktion besitzen kann, wurde erst spät (1980) bekannt; dass es darüber hinaus zudem membranäre Transportsysteme reguliert, konnte erst in den letzten Jahren gezeigt werden. Die ersten Kanäle, für die eine Phosphoniositid (PI)-Beeinflussung nachgewiesen wurde, waren die einwärts gleichrichtenden K+-Kanäle. 2006 wurden die ersten vorläufigen Hinweise publiziert, dass auch die Kanalfunktion der P2X Rezeptoren durch Phosphoinositide beeinflusst werden kann. Darauf aufbauend wurde in der vorliegenden Arbeit der P2X2R nach Expression in Xenopus Oozyten elektrophysiologisch auf eine mögliche Regulation durch PIPns untersucht. Um die in der Oozyte vorliegenden PI-Level gezielt während der Messung ändern zu können, wurde die spannungsgesteuerte Phosphoinositid-Phosphatase Ci-VSP coexprimiert. Ci-VSP, die der PTEN-Phosphatase strukturell sehr ähnlich ist, wurde 2005 aus der Schlauchascidie Ciona intestinalis kloniert. In der veröffentlichten Klonierungsarbeit wurde bereits gezeigt, dass Ci-VSP in der Lage ist, bekannte PI4,5P2-sensitive Membrankanäle, wie z. B. bestimmte K+-Kanäle, spannungsabhängig zu inhibieren. Es konnte in TEVC-Experimenten gezeigt werden, dass die durch Depolarisation induzierte Aktivierung dieser Phosphatase den P2X2 Rezeptorstrom in seiner Desensibilisierung sowohl beschleunigt als auch verstärkt. Dieser Effekt war spannungsabhängig und nahm mit höherer Depolarisation zu. Die ermittelte Spannungsabhängigkeit stimmte dabei mit dem sensitiven Potentialbereich der spannungsgesteuerten Ci-VSP-Domäne, gemessen an ihren gating-Strömen, überein. Der „Ci-VSP-Effekt“ auf den P2X Rezeptor konnte nur in Anwesenheit von ATP, d.h. bei aktiviertem Rezeptor, beobachtet werden. Wurden die Oozyten mit Wortmannin, einem PI4-Kinase(PI4K)-Inhibitor, behandelt, zeigte sich eine vergleichbare Veränderung des Rezeptorstroms. Eine PI4K-Inhibition zielt demnach offensichtlich auf die gleichen Regulationsmechanismen wie die Ci-VSP-Aktivierung. In weiterführenden zellfreien Patch Clamp-Messungen an Oozytenmembranen wurden sowohl Einzelkanal- als auch makroskopische Ströme des P2X2R unter Einfluss verschiedener, intrazellulär verabreichter PIs und PI-beeinflussender Enzyme untersucht. Einzig die Zugabe von PI4,5P2 hatte einen deutlich aktivierenden Einfluss auf den makroskopischen Rezeptorstrom, andere getestete PIs (wie auch PI3-Kinase und PTEN-Phosphatase) zeigten keinerlei Wirkung. Vergleichbare Ergebnisse konnten in vorläufigen Einzelkanal-Messungen an diesem Rezeptor Subtyp beobachtet werden. Da die PI4-Kinase offensichtlich an der beobachteten Beeinflussung der P2X2R Desensibilisierung beteiligt ist, wurde die P2X2-Rezeptorsequenz auf potentielle - über sogenannte SH3-Epitope vermittelte - PI4K-Interaktionsbereiche hin untersucht. Diese SH3-Epitope kommen in vielen zellulären Proteinen vor, um Protein-Protein-Interaktionen zu vermitteln. Nach Sequenzanalyse des maßgeblich am Desensibilisierungsgeschehen beteiligten C-Terminus des P2X2R konnte im distalen Teil ein SH3-Bindungsmotiv lokalisiert werden, das daraufhin durch gerichtete Mutagenese (P2X2-P451A/P454A) unwirksam gemacht wurde. Dieser mutierte Rezeptor verhielt sich in seiner Desensibilisierung wie der Wildtyp nach Wortmannin-Behandlung, zeigte also eine intrinsisch verstärkte Desensibilisierung. Eine Wortmannin-Behandlung der Oozyten, die den mutierten Rezeptor exprimierten, führte hingegen zu keiner weiteren Beeinflussung des Rezeptorstroms. Somit konnte letztlich der Schluss gezogen werden, dass die PI4K, und das mit ihr in direkter Verbindung stehende PI4,5P2, einen maßgeblichen Einfluss auf das Desensibilisierungsverhalten des P2X2R hat. Auf Basis der erarbeiteten Befunde wurde ein kinetisches Reaktionsmodell des P2X2R erstellt, das bisher aufgestellte Modelle mit den Ergebnissen dieser Arbeit vereint, aber auch in teilweisem Gegensatz zu dem von FUJIWARA & KUBO [2006] steht. Des Weiteren wurde im Verlauf dieser Arbeit die reversible Inhibition des P2X2R durch eine Reihe von Aminoglykosid-Antibiotika untersucht. Durch Analyse der Dosis-Wirkungs-Beziehungen, der Spannungs- sowie wie ATP-Konzentrations-Abhängigkeit der Inhibition konnte gezeigt werden, dass es sich dabei um einen nicht-kompetitiven open pore block handelte. Durch weiterführende Untersuchungen an einer nicht-desensibilisierenden P2X2/1 Rezeptorchimäre wurde gezeigt, dass eine Aminoglykosid-Inhibition die ATP-Dissoziation von der Rezeptorbindungsstelle signifikant verlangsamte. Dieser Befund deutet auf eine im Vergleich zum geschlossenen Zustand erhöhte Affinität des offenen Zustands für ATP hin. Neben den hier untersuchten Aminglykosiden sind bislang keine weiteren Substanzklassen bekannt, die den P2X2R durch einen derartigen Mechanismus hemmen.
Ionenkanäle bilden therapeutische Schlüsselstellen für viele Erkrankungen und sind daher vor allem für die pharmakologische und medizinische Forschung von herausragender Bedeutung. Der Forschungsbedarf ist enorm und dementsprechend groß auch die Nachfrage nach elektrophysiologischen Systemen, die eine Analyse von Ionenkanälen und/oder Wirkstoffen im Hochdurchsatz erlauben. Derzeitige Hochdurchsatzsysteme basieren zumeist auf modifizierten Patch-Clamp-Verfahren, weisen aber im Vergleich zu manuellen Patch-Clamp-Systemen noch einige Nachteile auf. In der vorliegenden Arbeit wurde daher im Rahmen eines vom Bundesministerium für Bildung und Forschung geförderten BioChancePlus-Projektes eine alternative Methode, die Fakir-Methode, entwickelt und ihre Einsatzmöglichkeit in Hochdurchsatzsystemen evaluiert. Bei der Fakir-Methode werden Zellen in einem inhomogenen, elektrischen Wechselfeld mit Hilfe dielektrophoretischer Kräfte zu Metallnanoelektroden hin beschleunigt, aufgrund ihrer Bewegungsenergie von letzteren penetriert und dadurch elektrisch kontaktiert. Dies ermöglicht die anschließende, intrazelluläre Messung in physiologischer Lösung. Im Vergleich zur Patch-Clamp-Methode hat die Fakir-Methode die Vorteile, dass das Zytoplasma der Zelle erhalten bleibt und dass mit einer geringen Zelldichte gearbeitet werden kann. Auf der anderen Seite polarisiert die Elektrode schnell und die genaue, intrazelluläre Zusammensetzung während der Messung ist nicht bekannt. Für die Realisierung der Fakir-Methode im Experiment wurde eine Mikrofluidikkammer mit austauschbaren Metallmikro- und Metallnanoelektroden- Chips entwickelt, die die mikroskopische Beobachtung des Kontaktierungsprozesses ermöglichte. Die Charakterisierung der Elektroden erfolgte sowohl durch Potentialmessungen als auch mit Hilfe von Impedanzspektroskopie. Um die dielektrophoretische Attraktion von Zellen genauer steuern zu können, wurde zudem ein Amplitudenmodulator entwickelt. Zellen konnten sowohl einzeln, als auch in Gruppen kontaktiert werden. Intrazelluläre Potentialmessungen von HEK293-Zellen, die den blaulichtgesteuerten Kationenkanal Channelrhodopsin-2 (ChR2) exprimierten, zeigten, dass mit Hilfe der Fakir-Methode von Membranproteinen verursachte Spannungsänderungen gemessen werden können. Beim Fakir-Modell auftretende Schwierigkeiten wurden analysiert und die Ergebnisse genutzt, um ein Konzept für eine hochreproduzierbare Herstellung von Nanoelektroden-Arrays unter Verwendung der 2-Photonenpolymerisations- Technolgie (2PP) zu entwerfen. Für den Einsatz als Biosensoren sind große Zellen besonders geeignet. Eine effektive Vergrößerung von Zellen kann durch die Multi-cell-Elektrofusion erreicht werden. Diese Art der Herstellung von Riesenzellen ist insbesondere deshalb so interessant, weil die Elektrofusion problemlos in ein automatisiertes Mikrofluidiksystem eingebunden werden kann. Neben HEK293-Zellen konnten nach Entwicklung geeigneter Protokolle für die Herstellung von Protoplasten auch Saccharomyces cerevisiae und Pichia pastoris zu Riesenzellen elektrofusioniert werden. Solche Riesenzellen wurden im Rahmen dieser Arbeit biophysikalisch charakterisiert. Neben Kapazitätsmessungen zeigten sowohl die Expression von YFP in den Membranen als auch die Verwendung von fluoresceinhaltiger Patch-Clamp- Pipettenlösung, dass es sich bei den Riesenzellen um einheitliche Kompartimente handelte und somit die gesamte Membranfläche für elektrophysiologische Experimente zur Verfügung stand. Vergleichende Patch-Clamp-Messungen von ChR2-exprimierenden Ursprungs- und Riesenzellen ergaben nicht nur, dass das überexprimierte Protein auch nach der Elektrofusion noch funktional war, sondern auch, dass die Expressionsdichte unverändert blieb. Damit bilden elektrofusionierte Riesenzellen weit über ihre Einsatzmöglichkeiten in Hochdurchsatzsystemen hinaus ein vielversprechendes Werkzeug, um zum Beispiel elektrogene Membranproteine mit geringer Stromamplitude nachzuweisen oder in der giant-inside-out- Konfiguration elektrophysiologische Messungen durchzuführen. Lipophile Anionen können eingesetzt werden, um die elektrischen Eigenschaften der Membranen zu verändern und die Zellstabiliät während des Elektromanipulationsprozesses zu verbessern. Daher wurde für vier verschiedene lipophile Anionen die Spannungsabhängigkeit der Erhöhung der spezifischen Membrankapazität in Patch- Clamp-Experimenten mit HEK293-Zellen analysiert.
In optogenetischen Anwendungen, welche die Manipulation von zellulären Aktivitäten durch Licht ermöglichen, werden die Eigenschaften von mikrobiellen Rhodopsinen, einer Familie natürlich vorkommender lichtgesteuerter Proteine, ausgenutzt.
In der vorliegenden Arbeit wurden die einwärts transportierende Protonenpumpe NsXeR, sowie die auswärts Natriumionenpumpe KR2 untersucht. Des Weiteren wurden Tandem Proteine betrachtet, die mikrobielle Rhodopsine kombinieren mit dem Chemokinrezeptor CXCR4, der durch SDF1 aktiviert und anschließend in Endosomen internalisiert wird.
Für die Untersuchung des Mechanismus, der die Vektorialität in NsXeR bestimmt, wurde eine umfassende elektrophysiologische Studie durchgeführt. In Patch Clamp Messungen an NsXeR exprimierenden NG108-15 Zellen wurden bei kontinuierlicher 561 nm Beleuchtung aktive Einwärtsströme entgegen eines elektrochemischen Gradienten gemessen. Ein Einfluss des intrazellulären pHs auf die steady-state Ströme und deren Abfallkinetik konnte nicht festgestellt werden. Der Vergleich der exponentiellen Abfallrate k2 mit den Übergängen im NsXeR Photozyklus, lässt den Schluss zu, dass der ratenlimitierende Schritt der MII Zerfall ist.
Die elektrogenen Schritte im NsXeR Photozyklus wurden mit elektrischen Messungen an der black lipid membrane (BLM) an NsXeR Proteoliposomen bestimmt. Die Belichtung mit 20 ns Lichtpulsen bei 556 nm rufen Spannungssignale hervor, die exponentiell gefittet wurden, wobei drei elektrogene Schritte identifiziert werden konnten. Bei pH 7.4 betrugen die ermittelten Zeitkonstanten etwa 220 µs, 1 ms und 15 ms, denen 42%, 10% und 48% an der Gesamtladungsverschiebung zugeordnet wurden. Die elektrogenen Schritte konnten den Übergängen im Photozyklus zugeordnet werden, wobei der erste Schritt mit t1 dem MI Aufbau (Deprotonierung Schiff’sche Base, Protonenabgabe zur intrazellulären Seite) zugeschrieben wurde. t2 wurde dem MI→MII Übergang (Switch, Zugänglichkeitsänderung vom Intra- zum Extrazellulären) zugeordnet und t3 korreliert mit dem MII Zerfall (Reprotonierung Schiff’sche Base, Protonenaufnahme von der extrazellulären Seite).
Die Kinetik und der Ladungstransportanteil des zweiten elektrogenen Schritts haben keine starke pH Abhängigkeit, was sich dadurch erklären lässt, dass t2 durch eine Konformationsänderung bestimmt wird. t1 und t3 werden bei höheren pH Werten beschleunigt, was sich bei t1 mit einer erleichterten intrazellulären Protonenabgabe erklären lässt. Für t3 wurde eine Reprotonierung durch eine Donor Gruppe Asp76 vorgeschlagen. Die pH-sensitive Änderung der relativen Ladungstransferanteile des ersten und dritten elektrogenen Schrittes (∆ΨI und ∆ΨIII) wurden durch eine mögliche Verzögerung der frühen Protonenabgabe bei niedrigen pH Werten erklärt.
Der mutmaßliche Protonenakzeptor Asp220 wurde gegen Asn und Glu ausgetauscht und in Patch Clamp sowie UV-Vis Spektroskopie Messungen untersucht. Für D220N wurden keine Pumpströme und kein Einfluss auf die maximale Absorptionswellenlänge λmax festgestellt. D220E dagegen führte zu einer Erniedrigung des pKa-Werts der Schiff’schen Base und zu einer Verminderung der Iss-Abfallsrate k2 in Patch Clamp Dauerbelichtungsmessungen (D220E k2 = 27.1 ± 1.8 Hz, Wildtyp k2 = 83.1 ± 2.6 Hz). Daraus konnte geschlossen werden, dass Asp220 wesentlich für den Protonentransport ist und nicht als Gegenion für die protonierte Schiff’sche Base dient.
In Patch Clamp Experimenten bei 561 nm Dauerbelichtung und zusätzlicher gepulster Belichtung bei 355 nm wurde der Blaulichteffekt an NsXeR untersucht, bei dem Proteine im M Intermediat ein Photon absorbieren und unter Reprotonierung der Schiff’schen Base in den Grundzustand zurückkehren.
Für NsXeR konnte eine Potentialabhängigkeit für die Richtung der transienten Ströme, die durch die
355 nm Belichtung hervorgerufen wurden, festgestellt werden. Beim NsXeR Blaulichteffekt scheint eine
Reprotonierung der Schiff’schen Base von beiden Seiten möglich zu sein, was auf die unterschiedlichen Zugänglichkeiten in den beiden M Zuständen MI und MII zurückgeführt wurde. Es wurde ein Modell vorgeschlagen, welches auf einem potentialabhängigen Gleichgewicht zwischen MI und MII basiert.
In Patch Clamp Messungen an KR2 exprimierenden NG108-15 Zellen wurden die Pumpströme untersucht, die durch den auswärts Transport von Na+ und H+ hervorgerufen wurden. Die Na+-Konzentrationen der intra- und extrazellulären Lösungen wurden symmetrisch variiert und die steady-state Ströme Iss bei 532 nm Dauerbelichtung betrachtet. Mit steigender Na+-Konzentration zeigte sich ein Übergang von einer linearen Potentialabhängigkeit der Iss, zu einem sättigungsähnlichen Verhalten bis hin zu einer fast glockenförmigen Form. Da die exponentielle Abfallrate der steady-state Ströme k2 in ihrer Potentialabhängigkeit mit den Iss korrelierte, konnte geschlossen werden, dass die Ströme überwiegend kinetisch limitiert sind. Die Erhöhung der Rate k2 mit steigender Na+-Konzentration zwischen -120 mV und -60 mV deutet darauf hin, dass die Na+-Aufnahme von der intrazellulären Seite bei diesen Bedingungen die Limitierung für die Pumpe darstellt.
Unter Na+-“freien” Bedingungen wurde der Einfluss des intrazellulären pHs untersucht. Für die Rate k2 wurde eine Erhöhung bei niedrigen pH Werten festgestellt und die Potentiale E0 (Iss = 0 pA) verschoben bei niedrigem intrazellulärem pH zu hyperpolarisierenden Potentialen. Daraus lässt sich schließen, dass die steady-state Ströme durch den Transport von Protonen hervorgerufen wurden.
In Messungen mit gepulster 530 nm Belichtung wurden die transienten Pumpströme gemessen und durch exponentielles Fitten des Stromabfalls drei elektrogene Schritte identifiziert. Eine Abhängigkeit vom Potential und der Na+-Konzentration konnte nur für den dritten Schritt mit der Rate 1/τ3 festgestellt werden, wobei 1/τ3 mit der Na+-Konzentration und bei positiveren Potentialen steigt. Unter Na+-“freien” Bedingungen steigt 1/τ3 auch mit niedrigeren intrazellulären pH Werten. Die elektrogenen Schritte wurden dem KR2 Photozyklus zugeordnet, wobei ein Modell angewendet wurde, das einen M1→M2 Übergang einführt. Diesem wurde der zweite elektrogene Schritt zugeordnet. Die relativen Ladungstransportanteile Q2 und Q3 des zweiten und dritten elektrogenen Schrittes sind sowohl potential- als auch Na+-abhängig. Um dieses Verhalten zu erklären, wurde ein Modell vorgeschlagen, bei dem ein Ausgleichsladungstransfer in Form von einer Protonenabgabe und -wiederaufnahme während des Photozyklus eingeführt wurde.
In Patch Clamp Messungen wurde die erhaltene Funktionalität der ChR2 Mutante ChR2(L132C) mit erhöhter Ca2+-Permeabilität im Tandem Protein tCXCR4/CatCh nachgewiesen. Auch die Internalisierung von tCXCR4/CatCh konnte anhand der zeitabhängigen Abnahme des CatCh-Signals nach der CXCR4-Aktivierung durch SDF1 in Strommessungen beobachtet werden. Für tCXCR4/Arch, ein Tandem Protein mit einer Protonenpumpe, wurde die SDF1-induzierte Internalisierung mit Hilfe der konfokalen Laser-Scanning-Mikroskopie betrachtet und eine Kolokalisierung der Fluoreszenz des im Tandem exprimierten YFP und der eines gelabelten CXCR4-spezifischen Antikörpers in intrazellulären Vesikeln beobachtet. Bei Behandlung mit dem CXCR4 Antagonisten AMD3100 wurde die Kolokalisierung hauptsächlich in der Zellmembran festgestellt, da die Internalisierung blockiert war. Die Tandem Protein könnten als in intrazellulären Organellen wirkende optogenetische Werkzeuge eingesetzt werden für z.B. die Manipulation der intrazellulären Ca2+-Konzentration.
In dieser Arbeit wurde der neuronale Glutamattransporter EAAC1 (Excitatory Amino Acid Carrier 1), kloniert aus Rattenretina, in HEK (Human Embryonic Kidney) Zellen transient exprimiert und mit Hilfe der patch clampTechnik elektrophysiologisch untersucht. Der Glutamattransport ist gekoppelt an den Kotransport von drei Natriumionen und einem Proton und den Gegentransport von einem Kaliumion. Damit werden pro Transportzyklus zwei positive Nettoladungen in die Zelle verschoben. Zusätzlich zum Glutamattransport verfügt der EAAC1 über eine Glutamatinduzierte Anionenleitfähigkeit, die nicht thermodynamisch an den Glutamattransport gekoppelt ist und besonders deutlich bei chaotropen Anionen (wie SCN ) in Erscheinung tritt. Eine weitere Funktion des Transporters ist seine Glutamatunabhängige Leckleitfähigkeit. Mit Hilfe von Ganzzellableitungen unter definierten ionalen extra und intrazellulären Bedingungen und bestimmtem Haltepotenzial erfolgte die Charakterisierung des Glutamattransporters von der extrazellulären Seite. Eine hohe Überexpression von EAAC1 in den HEKZellen, mit einer durchschnittlichen Dichte von # 4#10 3 Transporter pro µm 2 Zellmembran, erlaubte zudem die Beschreibung des Transporters von der intrazellulären Seite, durch Messungen am insideout patch. Stationäre Messungen an EAAC1 unter kontrollierten Spannungs und ionalen Bedingungen ließen verschiedene Aussagen zu über 1) die Bindungsreihenfolge von Glutamat und den kotransportierten Ionen an den Transporter, 2) den Anteil der Anionenleitfähigkeit am Glutamatinduzierten Gesamtstrom 3) die Abhängigkeit der Glutamatunabhängigen Leckleitfähigkeit und der Glutamatabhängigen Anionenleitfähigkeit von der Protonen und Natriumkonzentration und 4) die Identifikation des Ladungsträgers beim EAAC1assoziierten Leckstrom. Bei den durchgeführten vorstationären Messungen handelte es sich meist um SubstratsprungExperimente mit Hilfe der LaserpulsPhotolyse von #CNBcaged Glutamat. Damit konnte 1) der geschwindigkeitsbestimmende Schritt im Transportzyklus ermittelt werden, 2) Geschwindigkeitskonstanten verschiedener Teilreaktion im Transportzyklus von EAAC1 abgeschätzt werden und 3) die Spannungsabhängigkeit von Teilreaktionen identifiziert werden. Die Kombination von stationären und vorstationären Messungen mit Hilfe der LaserpulsPhotolyse sowie die Kombination von Ganzzellableitungen und insideout patches ermöglichte damit eine umfassende kinetische Untersuchung der verschiedenen Funktionen von EAAC1 und führten zu dem im folgenden beschriebenen Transportmodell. EAAC1 bindet auf der extrazellulären Seite zunächst ein Natriumion, wobei die Natriumbindungsstelle im elektrischen Feld der Membran liegt (# 25#30 %). Dieser Na beladene Transporterzustand ist assoziiert mit einem Glutamatunabhängigen Leckstrom, der von Anionen getragen ist. Der Na Bindungsreaktion schließt sich eine elektroneutrale Protonenbindung an. Der apparente pKWert des Protonakzeptors in EAAC1 liegt bei # 8, sodass unter physiologischen Bedingungen EAAC1 hauptsächlich in seiner protonierten Form vorliegt. Die nachfolgende Glutamatbindung (KD # 50 µM) ist ebenfalls spannungsunabhängig und erfolgt mit einer Geschwindigkeitskonstanten von # 2#10 7 M #1 s #1 . Sie löst eine elektroneutrale Konformationsänderung aus, die in einem Zeitbereich von 0,5#1 Millisekunde stattfindet und damit langsam ist im Vergleich zu den anschließenden elektrogenen Na Bindungsreaktionen. Der vollständig beladene Transporters transloziert in einem spannungsabhängigen Prozess (# 60#65 % des elektrischen Felds) Glutamat über die Membran mit einer Geschwindigkeitskonstanten von # 800 s #1 bei einem physiologischen Membranpotenzial von #80 mV. Der GlutamatTransportprozess ist mit der Glutamatinduzierten Anionenleitfähigkeit assoziiert, wobei sich beim GlutamatEinwärtstransport ein Verhältnis zwischen Transport und Anionenstrom (von SCN # ) von 1 zu 4 ergab, während es beim GlutamatAuswärtstransport bei 1 zu 1,5 lag. Die Dissoziationsfolge auf der intrazellulären Seite wurde nur für den Protonen-GlutamatKotransport bestimmt und war in umgekehrter Reihenfolge zur extrazellulären Seite. Verschiedene Mechanismen fördern auf der zytosolischen Seite die Dissoziation des Glutamates, bzw. verhindern den GlutamatAuswärtstransport. So führt die Änderung der Zugänglichkeit des Protonakzeptors zur zytosolischen Seite zu einer Verschiebung des apparenten pKWertes zu # 6,5. Damit liegt EAAC1 unter physiologischen Bedingungen auf der intrazellulären Seite hauptsächlich deprotoniert vor, was die Glutamatdissoziation fördert. Ebenso ist die Affinität mit einem 45fach erhöhten K M Wert im Vergleich zur extrazellulären Seite stark herabgesetzt. Die Relokation des Transporters erfolgt nach der Bindung eines Kaliumions und stellt mit einer Geschwindigkeitskonstanten von # 100 s #1 (bei einem Membranpotenzial von #80 mV) den hauptsächlich geschwindigkeitsbestimmenden Schritt im Transportzyklus dar. Bei der Relokation handelt es sich um einen elektrogenen Prozess (# 70#75 % des elektrischen Felds), wobei negative Ladungsträger über die Membran verschoben werden. Daher muss der Transporter über eine Eigenladung von < #1 verfügen. Daraus ergibt sich, dass die zu transportierende Nettoladung von zwei positiven Ladungen pro Transportzyklus auf zwei Reaktionsschritte verteilt ist. Der neuronale Glutamattransporter EAAC1 verfügt damit über verschiedene Mechanismen, den Transportprozess in Richtung Glutamataufnahme in die postsynaptische Nervenzelle zu fördern, entsprechend seiner physiologischen Aufgabe, die Glutamatkonzentration im synaptischen Spalt gering zu halten.
Channelrhodopsin-2, or ChR2, is a light-gated inward rectifying cation channel. Ever since its first characterisation (Nagel et al., 2003), it has been used extensively in the light-activated control of neural cells in culture as well as in living animals like mice, Caenorhabditis elegans and Drosophila melanagaster. Despite its broad application in the field of neuroscience, little is known about the properties of this ion channel. The aim of this thesis is to elucidate the single channel conductance under different conditions using stationary noise analysis on whole cell recordings of a HEK293 cell line that stably expresses the truncated ChR2 (amino acids 1-315), which behaves identically to the full length protein (Nagel et al., 2003). Stationary noise analysis is based on the fact that the ion channel noise due their opening and closing has a characteristic form of a plateau at low frequency points and a following decrease of power with 1/f² in difference power spectra, which are composed of the difference of fast Fourier transformed (FFT) stationary whole-cell recordings with and without illumination. From the parameters yielded by an approximation of the power spectra with a Lorentzian function the single channel conductance can be estimated. The single channel conductance of ChR2 was determined at -60 mV applied for different cations, yielding values of 91 ± 25 fS (Guanidine+), 42 ± 7 fS (Na+), 61 ± 18 fS (Li+) and 37 ± 14 fS (Methylammonium+). With 200 mM Guanidine+ outside of the cells and measurements between 0 mV and -60 mV applied, it could be shown that the inward rectification is still present on the scale of the single channel. Noise Analysis with concentrations between 40 and 200 mM Guanidine+ showed a saturation of the single channel conductance with high Guanidine+ concentrations with a maximal conduction of 129 ± 9 fS (Michaelis Menten approximation: Km = 82 ± 14 mM). Activation Energies of the rate constants k (2πfc, with fc = corner frequency of the Lorentzian function) and koff (1/τoff, with τoff = closing time of the channel at -60 mV) were determined to be 75 ± 23 kJ/mol and 64 ± 11 kJ/mol, respectively, which are similar to the value determined for the Channelrhodopsin-1 closing times (~60 kJ/mol; Nagel et al., 2002). The activation energy of the ChR2 single channel conductance was determined to be 21.2 ± 20.8 kJ/mol, which also is similar to the activation energy of the ChR1 current amplitude (20 kJ/mol; Nagel et al., 2002). The amount of active ChR2 channels in the membrane (160,000 or 226 ChR2/μm²) as well as the single channel current (-7.5 ± 0.6 fA) could be determined by variation of the light intensity (0.05 mW mm-2 to 5.3 mW mm-2). In the course of this thesis, the single channel parameters of the ChR2 mutant H134R were also determined. H134R had been previously published as a “gainof- function” mutant (Nagel et al., 2005a). The increased macroscopic current amplitude of H134R could be explained by an increased lifetime of the channel in comparison to the wildtype ChR2. Within the margin of error both single channel conductances in the presence of 200 mM Guanidine+ of the wildtype (91.1 ± 24.9 fS) and the H134R (89.4 ± 30.7 fS) are the same. In the presence of 200 mM Lithium+ values of 60.6 ± 17.8 fS for the wildtype ChR2 and 50.8 ± 9.6 fS for the H134R mutant were determined. This thesis marks the first in depth analysis of the single channel conductance of ChR2. Using stationary noise analysis the single channel conductance of Channelrhodopsin-1 as well as interesting Channelrhodopsin-2 mutants can also be analysed in the future.
The Na+,K+-ATPase was discovered more than 50 years ago, but even today the pumpcycle and its partial reactions are still not completely understood. In this thesis, Voltage Clamp Fluorometry was used to monitor the conformational changes that are associated with several electrogenic partial reactions of the Na+,K+-ATPase. The conformational dynamics of the ion pump were analyzed at different concentrations of internal Na+ or of external K+ and the influences on the conformational equilibrium were determined. To probe the effect of the internal Na+ concentration on the Na+ branch of the ion pump, oocytes were first depleted of internal Na+ and then loaded with Na+ using the epithelial sodium channel which can be blocked by amiloride. The conformational dynamics of the K+ branch were studied using different external K+ concentrations in the presence and in the absence of external Na+ to yield additional information on the apparent affinity of K+. The results of our Voltage Clamp Fluorometry experiments demonstrate that lowering the intracellular concentration of Na+ has a comparable effect on the conformational equilibrium as increasing the amount of K+ in the external solution. Both of these changes shift the equilibrium towards the E1/E1(P) conformation. Furthermore, it can be shown that the ratio between external Na+ and K+ ions is also a determinant for the position of the conformational equilibrium: in the absence of external Na+, the K+ dependent shift of the equilibrium towards E1 was observed at a much lower K+ concentration than in the presence of Na+. In addition, indications were found that both external K+ and internal Na+ bind within an ion well. Finally, the crucial role of negatively charged glutamate residues in the 2nd extracellular loop for the control of ion-access to the binding sites could be verified.
In dieser Arbeit wurde das Protein OR1 ausführlich charakterisiert und die Grundlage für weitere Studien an diesem Protein gelegt. Die Zielsetzung dieser Arbeit bestand primär in der biophysikalischen Analyse eines eukaryotischen Proteorhodopsins, da bislang keine Daten zu diesen vorlagen. Dieser Ansatz ist vergleichbar mit der Studie am BR ähnlichen Rhodopsin aus dem Pilz Leptosphaeria maculans (Waschuk et al. 2005). Auch wenn man aus den Eigenschaften von OR1 keine Signatur für eukaryotische PRs herausfiltern kann, so weist OR1 eine Reihe von Charakteristika auf, die es wert sind weiterbearbeitet zu werden. Zu den hervorzuhebenden Ergebnissen dieser Arbeit zählen:
(1) OR1 zeigte in der methylotrophen Hefe Pichia pastoris ein hohes Expressionsniveau weit über der gewohnten Ausbeute bei Membranproteinen.
(2) OR1 offenbarte sich als Proteorhodopsin mit BR ähnlichen Eigenschaften wie dem niedrigen pKs-Wert des Protonenakzeptors und damit guten Protonenpumpeigenschaften über einen großen pH-Bereich. Auch bindet OR1 keinen zweiten Chromophor, was die nahen Verwandten GR und XR hingegen tun.
(3) OR1 demonstriert, dass die Konfiguration des komplexen Gegenions von Proteorhodopsinen stark variiert und sich anscheinend flexibel den physiologischen Erfordernissen des jeweiligen Organismus anpasst. In diesem Zusammenhang spielt auch das konservierte Histidin eine Rolle, da es den primären Protonenakzeptor beeinflusst. Bei OR1 stellte sich heraus, dass das Histidin den pKs Wert der D100 Position nicht signifikant beeinflusst.
(4) OR1 wurde mit 13C und 15N Atomen erfolgreich markiert und das entwickelte Protokoll für die Rekonstitution bewährte sich. Die Proteoliposomen des Wildtyps gaben sehr gut aufgelöste Festkörper-NMR Spektren. In Zukunft sind somit ausführliche NMR Studien an OR1 möglich.