Refine
Year of publication
Document Type
- Doctoral Thesis (56)
Has Fulltext
- yes (56)
Is part of the Bibliography
- no (56)
Keywords
- Azobenzol (2)
- Carotinoide (2)
- Femtosekundenspektroskopie (2)
- Fluoreszenz (2)
- Lichtsammelkomplexe (2)
- Optische Spektroskopie (2)
- Photosynthese (2)
- Proteorhodopsin (2)
- RNA (2)
- Spektroskopie (2)
Institute
- Biochemie und Chemie (24)
- Biochemie, Chemie und Pharmazie (24)
- Physik (7)
- Biowissenschaften (1)
- MPI für Biophysik (1)
Cells perform a wide range of functions such as signalling, transportation, immunoprotection and metabolism. Unravelling the molecular mechanism behind those processes will provide a platform for more targeted and rational drug design. This is achieved by discerning the structural and functional aspects of the biological macromolecules involved. This thesis discusses about the biophysical characterization of protein structures and the biological importance of protein dynamics. Membrane receptors and enzymes which are ubiquitously present in our biological systems and regulate wide variety of functions are excellent choice for such study. From a pharmaceutical point of view, receptor and enzymes are exceptionally important drug targets as they represent the major share (receptor, 30% and enzymes, 47%) of all marketed drugs. Therefore, apart from biological insights, the detailed study of receptors and enzymes will provide the basis for new pharmaceutical applications. Most information about receptor activation and enzyme activity come from the structural and functional analysis of target members of the above mentioned systems.
In “Chapter 1 – General Introduction” the readers are introduced to the world of proteins with special focus on G-protein coupled receptors (GPCRs) and methyltransferases. The first part of this chapter discusses about GPCRs with emphasis on their classification, structural features and functions. GPCRs are the most abundant membrane receptors present in mammalian cells, accounting for almost 15% of all membrane proteins. The GPCR superfamily consists of ~800 members and can be subdivided into six classes (A-F). Class A containing rhodopsin, peptide hormones, olfactory GPCRs, is the most abundant with a large share of 85% of GPCR protein family. GPCRs share a common architecture of 7 transmembrane a-helices, with different ligand binding sites. Although a variety of ligands ranging from subatomic particles (a photon) to large proteins can activate a GPCR, their mechanism of signal transduction is almost similar. There are two major signal transduction pathways identified for GPCRs: the cAMP pathway and the phosphatidylinositol pathway. The therapeutic relevance of GPCRs has also been pointed out here since a large share (30%) of modern marketed drugs target GPCRs.
In the second part of this chapter, the structural and functional characterizations of methyltransferases (MTs) are discussed in detail. Several important biological processes in cells e.g. drug metabolism, gene transcription, epigenetic regulations are modulated by methylation of targets ranging from small biomolecules to large proteins. MTs are the proteins which catalyze this methylation reaction and transfer the methyl group to an acceptor molecule through SN2 like nucleophilic substitution reaction. The MTs can be classified on the basis of the substrate atoms they methylate: O (54% of all MTs), N (23%), C (18%), S (3%) and other acceptors (such as halides; 2%). They can also be categorized into five different classes (Class I-V) depending upon distinctive structural features facilitating substrate binding or catalytic activity. Rossmann fold and SET (acronym acquired from the Drosophila Su(var)3-9 and 'Enhancer of zeste' proteins) domain are the two characteristic structural motifs commonly found in MTs. Similar to GPCRs, MTs dysfunction has been shown to be involved in various diseases including neuropsychiatric diseases and cancer. Therefore they are also interesting targets for drug development. The final part of this chapter discusses the importance of structural biology in gathering information related to structure and conformational dynamics of proteins. The two prominent biophysical techniques used in structural biology, X-ray crystallography and NMR, are discussed with focus on their advantages and limitation. The importance of NMR spectroscopic techniques to investigate different dynamic processes of protein at atomic resolution under physiological conditions is also discussed. Real time NMR spectroscopy required for the analysis of slow protein dynamic processes (protein folding, enzyme catalysis, domain rearrangement) has been explained in detail.
The second part of the thesis (Chapters 3-4), which is the cumulative part, comprises the original publications grouped into 2 chapters according to their topic:
• NMR-spectroscopic characterization of the transiently populated photointermediates of bovine rhodopsin and it’s interaction with arrestin (Chapter 3)
• Structural and biophysical characterization of PaMTH1, a putative SAM dependent O-methyltransferase from filamentous fungi Podospora anserina (Chapter 4)
Each chapter is initiated by a detailed introduction to the topic, providing the framework for the following papers. The personal contribution of this thesis’ author to each publication is stated in the introduction to the respective article.
In the present work, the photo-protection mechanisms in plants and purple bacteria were investigated experimentally at the molecular level. For this purpose, several spectroscopic methods were combined and applied to elucidate the function of carotenoids, pigments of the photosynthetic apparatus, in photo-protection. The experiments were focused on the mechanisms involved in quenching of singlet and triplet states of the electronically excited (bacterio)chlorophylls. This photosynthetic reaction events occur on an ultrafast time-scale. Measuring such short-lived events, and understanding the underlying principles, demand some of the most precise experiments and exact measurement technologies currently available. This implies certain requirements for the light source used: a suitable wavelength within the absorption band of the sample, sufficient power, and, most importantly, a pulse duration short compared to the studied reaction. Nowadays, we can achieve all this requirements using femtosecond-spectroscopic systems, which produce laser pulses shorter than 100 femtoseconds (fs). Transient absorption spectroscopy provides important information on molecular dynamics interrogating electronic transitions. The technique is based on photochemical generation of transient species with femtoseconds pump pulses and measuring transient absorption changes of the sample using a second, time delayed probe pulse which in this case is a spectrally broad white-light pulse.
Untersuchung der Konformation und Dynamik von RNA mit Hilfe fluoreszierender Farbstoffmoleküle
(2010)
Die vorliegende Arbeit beschäftigt sich mit der Untersuchung der konformationellen und elektronischen Eigenschaften sowie der Dynamik verschiedener RNA-Systeme. Zur Durchführung dieser Experimente wurde zusätzlich zu bereits vorhandenen statischen und zeitaufgelösten Absorptionsspektrometern im Rahmen dieser Arbeit eine Apparatur zur Messung von Fluoreszenzlebensdauern entwickelt, die durch die integrative Verwendung zweier verschiedener, etablierter Technologien (TCSPC und Aufkonvertierung) über einen weiten Zeitbereich von 9 Größenordnungen (100 fs - 0,1 ms) operiert. Mit diesem Aufbau konnten neben den RNA-Studien wichtige Beiträge zum Verständnis der Isomerisierung eines Retinalproteins, des Transportprozess des Membrantransportproteins TbSMR und der im Infraroten liegenden Fluoreszenz des Radikalkations von Astaxanthin gewonnen werden. Der Schwerpunkt der vorliegenden Arbeit liegt auf der Untersuchung verschiedener RNA-Systeme: So werden die optischen Eigenschaften einer 1-Ethinylpyren-modifzierten RNA-Adeninbase allein und in RNA-Strängen eingebunden untersucht. Statische Fluoreszenzmessungen zeigen einen ausgeprägten Ladungstransfercharakter des Chromophors und eine generell große Wechselwirkung zwischen Ethinylpyren und Adenin, die in einer substanziellen Änderung der optischen Eigenschaften des Pyrens resultiert. Die Untersuchung der schnellen Photodynamik von Pyrenadenin zeigt zudem eine Verringerung der Lebensdauer von Pyren um etwa 2 Größenordnungen. Pyrenadenin zeigt sowohl Fluoreszenz eines neutralen (100-200 ps), als auch eines energetisch tiefer liegenden Ladungstransferzustands (1-2 ns). Die Formationszeit des Ladungstransferzustandes fällt mit steigender Polarität des Lösemittels. Eingebunden in Modell-RNA-Stränge ist Fluoreszenzquantenausbeute des Chromophors ein deutlicher Indikator für seine Interkalation. Nur in der stabileren Umgebung von GC-Basenpaaren ist das Pyren in der Lage, sich dauerhaft innerhalb des Duplex aufzuhalten, während in einer flexibleren AU-Umgebung eine Position außerhalb des RNA-Duplex präferiert wird. Transiente Absorptionsmessungen zeigen, dass die Photophysik des in RNA eingebundenen Pyrenadenins nur kleine Variationen im Vergleich zur Photophysik des Labels allein aufweist. Die deutliche Abnahme der Quantenausbeute des interkalierten Chromophors geht hauptsächlich auf Kosten der langlebigeren Ladungstransferfluoreszenz, so dass interkaliertes Pyren insgesamt schneller in den Grundzustand zurückkehrt als nicht interkaliertes. Mit Hilfe eines doppelt modifizierten Duplex, bei dem sich jeweils ein Farbstoff an einem der beiden Stränge befindet, kann nachgewiesen werden, dass aufgrund von Exzimerwechselwirkungen eine Verschiebung des Fluoreszenzmaximums von 35 nm auftritt. Kurzzeitspektroskopische Messungen zeigen Signale, die als Superposition von Monomeren und Exzimeren interpretiert werden können, wobei die Lebensdauer des letzteren mit 18,5 ns die der Monomerkomponente um ein Vielfaches übertrifft. Ein weiterer Teil dieser Arbeit beschäftigt sich mit einer Studie zur Bindung des fluoreszenten Liganden Tetrazyklin an das Tetrazyklin bindende Aptamer. Hier wird auf Basis verschiedener Mutanten mit Hilfe des TCSPC eine Analyse der Stabilität der Bindetasche sowie mit der Stopped-Flow-Methode eine Beobachtung des Bindungsprozesses durchgeführt. Insgesamt folgt die Bindung des Tetrazyklins an das Aptamer einer zweistufigen Kinetik, deren zweiter Schritt irreversibel ist. Die Bindung läuft, verglichen mit anderen Aptameren, sehr schnell ab. Während die Mutationen von A13 und A50,die direkte Kontakte zum Substrat bilden, nur einen leichten Einfluss auf beide Bindungsschritte ausüben, führt eine Mutation der für die Präformation verantwortlichen Base A9 zu einer Verlangsamung des Bindungsprozesses um mehr als einen Faktor 20 durch eine immens gesteigerten Rückreaktionsrate des ersten Bindungsschritts. Hieraus lässt sich schließen, dass bei fehlender Präformation des Aptamers nur wenige Tetrazyklinmoleküle ein für vollständige Bindung geeignetes Aptamer vorfinden. Die Bindung an A13 und A50 geschieht bereits im ersten Schritt des Bindungsprozesses. Ferner konnte anhand von Lebensdauermessungen gezeigt werden, dass nach dem Wildtyp die Mutante A9G die stabilste Bindetasche aufwies. Das Fehlen eines direkten Kontaktes wirkt sich deutlich stärker aus. Insbesondere führt die Abwesenheit der Fixierung des Gegenions durch A50 zu der instabilsten Bindetasche. Wie in dieser Arbeit gezeigt wird, ist die zeitaufgelöste optische Spektroskopie insbesondere in Verbindung mit fluoreszierenden Molekülen ein ausgezeichnetes Mittel zur Beobachtung von Struktur und Dynamik von RNA. Die Empfindlichkeit von Fluoreszenz auf die Veränderung der Umgebung des Chromophors erlaubt es, Konformationsdynamik und elektronische Konfigurationen in Echtzeit zu beobachten.
Ziel dieser Arbeit war die Aufklärung lichtinduzierter Strukturänderungen verschiedener photoschaltbarer Moleküle durch zeitaufgelöste Infrarotspektroskopie. Hierzu war es notwendig, eine komplexe Messapparatur zu konzipieren, aufzubauen und zu optimieren. Das entwickelte Anreg-/Abtast-Experiment ermöglicht die Messung kleinster transienter Absorptionsänderungen (delta A<1E-5) im Spektralbereich von 1000 cm^-1 bis 2500 cm^-1 mit einer Zeitauflösung von etwa 0,3 ps. Es können Anregungspulse im Bereich von 258nm bis über 600nm generiert werden. Über ein computergesteuertes Wellenplättchen kann die Polarisation des Anregungslichtes während der Datenaufnahme variiert werden, was eine Auswertung hinsichtlich der molekularen Anisotropie ermöglicht. Die eingesetzten Probenzellen gestatten die Untersuchung geringster Probenmengen (V <20µL) bei Temperaturen bis zu 50°C. Nitrophenylacetat (NPA) wurde hinsichtlich seiner Photodecarboxylierungsreaktion untersucht. Für alle drei Konstitutionsisomere konnte nachgewiesen werden, dass die Freisetzung von CO2 innerhalb von 1 ns erfolgt. Es zeigen sich signifikante Unterschiede zwischen den Reaktionsverläufen der drei Konstitutionen, wobei die erhaltenen Amplituden der Photoproduktspektren mit den bekannten Decarboxylierungsquantenausbeuten korrelieren. Die globale Analyse ergibt einen multiexponentiellen Aufbau des CO2-Signals. Im Fall von meta- und para-NPA erfolgt die Abspaltung von CO2 über einen dominanten Zerfallskanal mit einer Zeitkonstante von t~200 ps. Quantenchemische Rechnungen legen nahe, dass dieser Hauptreaktionspfad über den Triplettzustand verläuft. Bei ortho- NPA wird dieser Zerfallskanal effektiv gequencht, was mit einer schnellen Deaktivierung des angeregten Singulettzustandes durch einen intramolekularen Protonentransfer erklärt wird. Nach diesen Messungen steht fest, dass meta-Nitrophenylacetat hervorragend als caged compound für CO2 geeignet ist. Die Primärdynamik von solubilisiertem Proteorhodopsin (PR) in D2O wurde im infraroten und sichtbaren Spektralbereich sowohl bei saurem als auch bei alkalischem pD-Wert untersucht. Dies erlaubt den direkten Vergleich der in beiden Spektralbereichen gemessenen Daten. Der primäre Protonenaktzeptor Asp97 liegt dabei entweder protoniert (pD=6,4) oder deprotoniert (pD=9,2) vor. Die transienten vis-Absorptionsspektren ergaben, wie bei PR in H2O, einen biexponentiellen Zerfall des angeregten Zustands und die gleichzeitige Bildung des PRK-Photoproduktes. Die Abweichung der bei PR in D2O ermittelten Werte von den publizierten Zeitkonstanten der H2O-Messung wird als kinetischer Isoptopeneffekt interpretiert. Dieser variiert mit dem pD-Wert, was auf Unterschiede der Wasserstoffbrückenbindungsnetzwerke in der Retinalumgebung hinweist. Die Signaturen der transienten Infrarotspektren werden den C=C- und C=N-Moden des Retinals sowie der Amid I-Mode des Proteins zugeordnet. Es konnte ebenfalls die Bildung des PRK-Produktes nachgewiesen werden, wobei die Isomerisierungsquantenausbeute des Retinals unabhängig von der Protonierung von Asp97 ist. Die im IR bestimmten Zeitkonstanten sind dabei unabhängig vom pD-Wert und weichen von den im Sichtbaren ermittelten Werten ab. Dieser Befund wird mit dem Einfluss der molekularen Temperatur auf die transienten IR-Spektren und dem Auftreten von Kühlprozessen erklärt. Zusätzlich zum Wildtyp-Protein wurde die PR-D97N-Mutante als Modellsystem für PR im sauren pH-Bereich ebenfalls im vis- und IR-Bereich untersucht. Die dabei erzielten Ergebnisse stehen im Einklang mit den bisherigen Ausführungen. Der geringe kinetische Isotopeneffekt weist auf ein ähnliches Wasserstoffbrückennetzwerk wie beim Wildtyp unter sauren Bedingungen hin. Als letztes wurde ein synthetisches Modellcollagen untersucht. Die Seitenkettenverbrückung der Peptidsequenz mit einem Azobenzol-basierten, künstlichen Photoschalter sollte eine lichtinduzierte Entfaltung der Tertiärstruktur ermöglichen. Der isolierte Photoschalter und die gekoppelte Sequenz wurden zunächst unter Gleichgewichtsbedingungen sowohl im UV/vis- als auch im IR -Bereich umfangreich spektroskopisch charakterisiert. Diese Messdaten lagen zum großen Teil bereits vor und wurden in dieser Arbeit einer detaillierten Auswertung unterzogen. Für den isolierten Schalter konnte im IR-Bereich eine umfassende Bandenzuordnung erstellt werden. Dabei wird im photostationären Gleichgewicht eine reversible trans-> cis-Isomerisierung festgestellt, welche keine Temperaturabhängigkeit aufweist. Darüberhinaus wurden polarisationsabhängige, transiente IR-Spektren des isolierten Azoschalters für die trans->cis- und die cis->trans-Isomerisierungsrichtung aufgenommen. Die instantan auftretenden, markanten Differenzsignale können den Amid I- und Amid II-Moden der im Schalter enthaltenen Peptidbindungen sowie den Phenylmoden zugeordnet werden. Die extrahierten kinetischen Parameter sind für beide Isomere nahezu identisch, was durch einen dominanten Beitrag molekularer Kühlprozesse erklärt werden kann. Aufgrund der geringen Isomerisierungsquantenausbeute (< 10 %) können die Differenzspektren der photostationären Gleichgewichte nicht in den Produktspektren dieser Messungen reproduziert werden. Hinsichtlich der ermittelten Anisotropieparameter ergeben sich kleine Unterschiede zwischen beiden Datensätzen. Zusammen mit theoretischen Modellierungen werden diese in Zukunft genauere Aussagen über die Strukturen der Isomere erlauben. Die UV/vis-Absorptionsspektren des gekoppelten Systems zeigen, dass die Absorptionsbanden des Azoschalters durch die Kopplung an das Collagen nicht signifikant beeinflusst werden. Im IR-Absorptionsspektrum konnten wichtige Amid I-, Amid II- und Amid II0-Banden des Azoschalters und der Peptidsequenz sowie eine große Anzahl weiterer Banden zugeordnet werden. Temperaturabhängige Absolut- und Differenzspektren im UV/vis- und IR-Bereich zeigen eine irreversible thermische Denaturierung der Collagentripelhelix ab etwa 50°C. Das verwendete, deuterierte Lösungsmittelgemisch führt zu einem H/D-Austausch. Anhand der Amid II-Bande der in der tripelhelikalen Struktur geschützten Glycine kann die Existenz der Collagenstruktur und ihre Entfaltung nachgewiesen werden. Die Amplituden der photostationären Differenzspektren sind jedoch kleiner als beim isolierten Schalter, was auf eine verringerte Isomerisierungsquantenausbeute hinweist. Die bei Erwärmung beobachtete Vergrößerung der Differenzsignale wird mit einer effizienteren Isomerisierung nach dem Aufschmelzen der Tripelhelix erklärt. Für die trans->cis-Isomerisierungsrichtung wurden transiente IR-Spektren des Azocollagens bei unterschiedlichen Temperaturen aufgenommen. Alle instantan auftretenden Differenzsignale können auf die Schwingungsmoden des Azoschalters zurückgeführt werden. Bei einer Temperatur von 50°C lässt sich ein Einfluss der Peptidsequenz auf die transienten Spektren nicht nachweisen, was mit einer aufgeschmolzenen Tertiärstruktur im Einklang ist. Hingegen wird bei 20°C das Ausbleichen von Amid I-Schwingungsbanden der Peptidsequenz beobachtet, was eindeutig einen Energietransfer auf diese Moden zeigt. Bei 35°C sind die Bleichsignale des Collagens in diesem Bereich bereits deutlich abgeschwächt. Die transienten Spektren des isolierten Azoschalters besitzen keine derartige Temperaturabhängigkeit.
Cellular metabolism can be envisaged by fluorescence lifetime imaging of fluorophores sensitive to specific intracellular factors such as [H+], [Ca2+], [O2], membrane potential, temperature, polarity of the probe environment, and alterations in the conformation and interactions of macromolecules. Lifetime measurements of the probes allow the quantitative determination of the intracellular factors. Fluorescence microscopy taking advantage of time-correlated single photon counting is a novel method that outperforms all other techniques with its single photon sensitivity and picoseconds time resolution. In this work, a time- and space-correlated single photon counting system was established to investigate the behavior of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) in living cells. DASPMI is known to selectively stain mitochondria in living cells. The uptake and fluorescence intensity of DASPMI in mitochondria is a dynamic measure of membrane potential. Hence, an endeavour was made to elucidate the mechanism of DASPMI fluorescence by obtaining spectrally-resolved fluorescence decays in different solvents. A bi-exponential decay model was sufficient to globally describe the wavelength dependent fluorescence in ethanol and chloroform. While in glycerol, a three-exponential decay model was necessary for global analysis. In the polar low-viscous solvent water, a mono-exponential decay model fitted the decay data. The sensitivity of DASPMI fluorescence to solvent viscosity was analysed using various proportions of glycerol/ethanol mixtures. The lifetimes were found to increase with increasing solvent viscosity. The negative amplitudes of the short lifetime component found in chloroform and glycerol at the longer wavelengths validated the formation of new excited state species from the initially excited state. Time-resolved emission spectra in chloroform and glycerol showed a biphasic increase of spectral width and emission maxima. The spectral width had an initial fast increase within 150 ps and a near constant thereafter. A two-state model based on solvation of the initially excited state and further formation of TICT state has been proposed to explain the excited state kinetics and has been substantiated by the de-composition of time-resolved spectra. The knowledge of DASPMI photophysics in a variety of solvents now provides the means of deducing complex physiological parameters of mitochondria from its behavior in living cells. Spatially-resolved fluorescence decays from single mitochondria or only very few organelles of XTH2 cells signified distinctive three-exponential decay kinetics of viscous environment. Based on DASPMI photophysics in a variety of solvents, these lifetimes have been attributed to the fluorescence from locally excited state (LE), intramolecular charge transfer state (ICT) and twisted intramolecular charge transfer (TICT) state. A considerable variation in lifetime among mitochondria of different morphology and within single cell was evident corresponding to the high physiological variations within single cells. Considerable shortening of the short lifetime component (τ1) under high membrane potential condition, such as in the presence of ATP and/or substrate, was similar to quenching and dramatic decrease of lifetime in polar solvents. Under these conditions τ2 and τ3 increased with decreasing contribution. Upon treatment with ionophore nigericin, hyperpolarization of mitochondria resulted in remarkable shortening of τ1 from 159 ps to 38 ps. Inhibiting respiration by cyanide resulted in notable increase of mean lifetime and decrease of mitochondrial fluorescence. Increase of DASPMI fluorescence on conditions elevating mitochondrial membrane potential has been attributed to uptake according Nernst distributions, to de-localisation of π electrons, quenching processes of the methyl pyridinium moiety and restricted torsional dynamics at the mitochondrial inner membrane. Accordingly, determination of anisotropy in DASPMI stained mitochondria in living XTH2 cells, revealed dependence of anisotropy on membrane potential. Such changes in anisotropy attributed to restriction of the torsional dynamics about the flexible single bonds neighboring the olefinic double bond revealed the previously known sub-mitochondrial zones with higher membrane potential along its length. Membrane-potential-dependent changes in anisotropy have further been demonstrated in senescent chick embryo fibroblasts. In conclusion, spectroscopic observations of excited-state kinetics of DASPMI in solvents and its behavior in living cells had revealed for the first time its localisation, mechanism of voltage sensitive fluorescence and its membrane-potential-dependent anisotropy in living cells. The simultaneous dependence of DASPMI photophysics on mitochondrial inner membrane viscosity and transmembrane potential has been highlighted.
A solid-supported membrane (SSM) is an alkanethiol/lipid hybrid membrane with comparable lipid mobility, conductivity, and capacitance than a black lipid membrane (BLM). However, mechanical perturbations, which usually destroy a BLM, do not influence the life-time of a SSM, which is mechanically so stable that solutions may be rapidly exchanged at its surface. This key property has been utilized in this thesis to characterize electrophysiologically two bacterial secondary active transporters (MelB and LacY) as well as to investigate the specific interactions between ions and lipid membranes. These three different projects are summarized below: (1) The properties of lipid membranes, which represent the most important biological interface between intracellular and extracellular compartments, are essentially modulated by the ionic composition of the surrounding aqueous medium. To investigate specific interactions between ions and lipid membranes, solutions of different ionic composition were exchanged at the surface of a SSM through a flow system. This solution exchange resulted in charge translocations that were interpreted in terms of binding of the ions to the lipid headgroups at the SSM surface. We found that chaotropic anions and kosmotropic cations are attracted to the membrane independent of the membrane composition. In particular, the same behaviour was found for lipid headgroups bearing no charge like monoolein. This general trend is modulated by the electrostatic interaction of the ions with the lipid headgroup charge. Our experimental results are in agreement with recent molecular dynamic simulations of PC membranes. (2) Rapid solution exchange on a solid-supported membrane (SSM) is investigated using fluidic structures and a solid-supported membrane in a wall jet geometry. The flow was analyzed with a new technique based on specific ion interactions with the surface combined with an electrical measurement. The critical parameters affecting the time course of the solution exchange and the transfer function describing the time resolution of the SSM system were determined. The experimental data indicate that the solution transport follows a plug flow geometry while the rise of the surface concentration can be approximated by Hagen Poiseuille flow with ideal mixing at the surface of the SSM. Using an improved cuvette design a solution exchange as fast as 2 ms was achieved at the surface of a solid supported membrane. As an application of the technique the rate constant of a fast electrogenic reaction in the melibiose permease MelB, a bacterial (Escherichia coli) sugar transporter, is determined. For comparison, the kinetics of a conformational transition of the same transporter was measured using stopped-flow tryptophan fluorescence spectroscopy. The relaxation time constant obtained for the charge displacement agrees with that determined in the stopped-flow experiments. This supports the previous proposition that upon sugar binding MelB undergoes an electrogenic conformational transition with a rate constant of k ~ 250 s-1. (3) Electrogenic events due to activity of wild-type lactose permease from Escherichia coli (LacY) were investigated with proteoliposomes containing purified LacY adsorbed on a solid-supported membrane electrode. Downhill sugar/H+ symport into the proteoliposomes generates transient currents. Studies at different lipid to protein ratios and at different pH values, as well as inactivation by N-ethylmaleimide, show that the currents are due specifically to the activity of LacY. From analysis of the currents under different conditions and comparison with biochemical data, it is apparent that the predominant electrogenic event in downhill sugar/H+ symport is H+ release. In contrast, LacY mutants E325A and C154G, which bind ligand normally but are severely defective with respect to lactose/H+ symport, exhibit a minor electrogenic event upon addition of LacY-specific substrates, representing only 6% of the total charge displacement of the wild-type. This activity is due either to substrate binding per se or to a conformational transition following substrate binding. We propose that turnover of LacY involves at least two electrogenic reactions: (i) a minor reaction that occurs upon sugar binding and is due to a conformational transition in LacY; and (ii) a major reaction due to cytoplasmic release of H+ during downhill sugar/H+ symport, which is the limiting step for this mode of transport.
Die Fluoreszenz der organischen Verbindung ''Pigment Yellow 101'' wurde mittels zeitaufgelöster Anreg-Abtast-Spektroskopie im sichtbaren Spektralbereich untersucht. P.Y. 101 und ein Derivat mit zusätzlichen Methylgruppen an den Azin-Kohlenstoffatomen, wurden mit zwei Derivaten verglichen, die keine Hydroxygruppen tragen und nicht fluoreszieren. Es konnte gezeigt werden, dass die Fluoreszenz bei diesen Verbindungen eine intrinsische Eigenschaft ist, die von der Reihenfolge der angeregten Zustände bestimmt wird. Bei Derivaten mit Hydroxygruppe entspricht der niedrigste angeregte Zustand einem pp*-Übergang, welcher hauptsächlich durch Fluoreszenz zurück in den Grundzustand gelangt. Bei den Verbindungen ohne Hydroxygruppe fehlt die stabilisierende Wasserstoffbrücke, die zur Absenkung des entsprechenden Zustands führt, so dass bei diesen Derivaten der unterste angeregte Zustand einem np*-Übergang entspricht, der optisch verboten ist und somit nicht direkt populiert wird. Bei der Anregung wird ein höher angeregter Zustand bevölkert, der in den niedrigsten angeregten Zustand relaxiert, welcher über eine konische Durchschneidung schnell und strahlungsfrei erreicht werden kann. Der niedrigste angeregte Zustand schneidet seinerseits den Grundzustand, so dass auch die Repopulierung des Ausgangszustands schnell, effizient und strahlungslos abläuft. Eine ganz andere Art der Photochemie wird bei Azobenzol (AB) und AB-Derivaten beobachtet. Durch Isomerisierung um die N-N-Doppelbindung wird ein Photoprodukt gebildet, das cis-Isomer. Die Quantenausbeute der Isomerisierung ist dabei abhängig davon, welcher elektronische Übergang angeregt wurde. Substituenten am AB üben unterschiedlichen Einfluss auf die elektronischen Eigenschaften aus: Elektronegative Gruppen in meta-Position zur Diazobrücke verändern die Lage der Absorptionsbanden kaum, ebensowenig die Rate der thermischen Rückisomerisierung und auch die Dynamik nach Photoanregung zeigt keine signifikanten Unterschiede in Abhängigkeit vom Substituenten und kann in Analogie an unsubstituiertes AB interpretiert werden. Nach Anregung des np*-Übergangs zerfällt der angeregte Zustand biexponentiell. Die Anregung des pp*-Übergangs, dem optisch erlaubten Übergang, führt zur Population des zweiten angeregten Zustands. Entlang einer konischen Durchschneidung wird schnell und effizient der erste angeregte Zustand populiert. Dieser Prozess zeigt sich bei den zeitaufgelösten Messungen in einer schnellen Zerfallszeit, die nur wenige hundert Femtosekunden beträgt. Die nun folgenden Prozesse finden im ersten angeregten Zustand statt und sind vergleichbar mit den Prozessen nach np*-Anregung. Der Hauptunterschied zwischen den beiden Dynamiken im S1-Zustand ist die Ausgangsgeometrie, mit der die Moleküle diesen Zustand populieren (Franck-Condon-Bereich bei direkter Anregung, bzw. eine große Bandbreite an Geometrien nach dem S2-S1-Übergang), sowie die Schwingungsenergie die das System jeweils besitzt. Auch nach ursprünglicher S2-Anregung können zwei Zerfallszeiten dem ersten angeregten Zustand zugeordnet werden, die analog der direkten Population als Geometrieänderung in Richtung des Potentialminimums und Isomerisierung bzw. Rückkehr in den Grundzustand interpretiert werden und in der Größenordnung von einer bzw. fünf Pikosekunden liegen. Die Modifizierung von Peptiden mit Azobenzol stellt einen Weg dar, zeitlich synchronisiert, eine Störung in der Struktur zu induzieren. Dieses Konzept wurde bereits erfolgreich zur Untersuchung der Faltung zyklischer Peptide eingesetzt. Modifizierte Kollagenstränge sind eine Erweiterung dieses Prinzips, da sie eine Möglichkeit darstellen, die Tertiärstruktur eines Peptids zu adressieren. Für das vorliegende Azokollagen konnte gezeigt werden, dass die gewählte Aminosäuresequenz auch nach Anbringen der Azobenzolklammer zu gefaltetem Kollagen führt, welches thermodynamisch stabil ist. Der Schmelzpunkt der Tripelhelix liegt unter den gewählten Bedingungen bei 55°C. Die Isomerisierung des Azobenzols induziert eine Störung der Tertiärstruktur, die zur teilweisen Entfaltung der Tripelhelix führt, was ein reversibler Prozess ist. Eine vollständige Entfaltung findet erst bei Temperaturen oberhalb des Schmelzpunkts statt. Zeitaufgelöste Messungen im sichtbaren Spektralbereich zeigten, dass die Schalterdynamik durch Anbringung an das Peptid nicht signifikant im Vergleich zum reinen AB-Schalter verändert wird.
Ziel der vorliegenden Dissertation war es, die Dynamik des Retinalchromophors in archaealen, bakteriellen sowie eukaryotischen Retinalproteinen zeitaufgelöst zu untersuchen und so Informationen über die unterschiedlichen lichtgesteuerten zyklischen Reaktionen zu erhalten. Für das bakterielle Proteorhodopsin (PR) wurde die Primärdynamik im sichtbaren Spektralbereich unter D2O-Bedingungen bei unterschiedlichen pD-Werten untersucht. Es zeigte sich, dass das isomerisierte K-Photoprodukt mit zwei Zeitkonstanten im Bereich von 1 ps und 20 ps gebildet wird. Der Vergleich mit Messungen in H2O erlaubte es den kinetischen Isotopeneffekt für die Deaktivierung des S1-Zustandes zu berechnen. Die Ergebnisse weisen dabei auf unterschiedliche Wasserstoffbrückenmuster unter sauren und alkalischen Bedingungen hin. Um diesem Resultat weiter nachzugehen, wurde die D97N-Mutante untersucht, bei der der primäre Protonenakzeptors ungeladen vorliegt. Die gefundene Primärdynamik von PR D97N läuft nur unwesentlich langsamer ab als die des Wildtyp-Proteins bei pD 6,4. Um weitergehende Einsichten in die Primärdynamik von PR zu erlangen, wurden am Wildtyp-Protein sowie der D97N-Mutante transiente Absorptionsmessungen im Bereich der C=C- und C=N-Schwingung des Retinals durchgeführt. Es stellte sich heraus, dass die Quantenausbeute der K-Bildung unabhängig vom pD-Wert ist. In einem weiteren Schritt wurde der Einfluss des hochkonservierten His-75 auf die Isomerisierungsdynamik untersucht. Hierfür wurden die Mutanten H75N und H75M verwendet. Die Kurzzeitmessungen lassen keinen ausgeprägten Einfluss auf die Isomerisierungsdynamik erkennen. Auch der nachfolgende Teil des Photozyklus war im Blickpunkt dieser Arbeit. Die Tieftemperaturstudien im sichtbaren Spektralbereich erlaubten das in kinetischen Messungen nicht beobachtete M-Intermediat des sauren Photozyklus nachzuweisen. Um strukturelle Einblicke in den Photozyklus zu erlangen und die am Pumpvorgang beteiligten Aminosäuren zu identifizieren, wurden nachfolgend Tieftemperaturuntersuchungen im infraroten Spektralbereich durchgeführt. Die Implementierung eines Faserspektrometers in den Strahlengang des FTIR-Aufbaus erlaubte hierbei die simultane Aufnahme der lichtinduzierten Änderungen der Bandenposition im sichtbaren Spektralbereich und der Änderungen der Proteinstruktur sowie der Seitenketten. Für den M-Zustand bei pH 5,1 konnte gezeigt werden, dass auch hier eine Aspartat- oder Glutamat-Seitenkette als Protonenakzeptor fungiert. Weiterhin konnte dargelegt werden, dass der Photozyklus von PR nicht nur vom pKa-Wert des Protonen-akzeptors Asp-97 abhängt, sondern von einem Zusammenspiel mehrerer pH-abhängiger Gleichgewichte, da schon kleinste Änderungen des pH-Werts im Bereich des pKa großen Einfluss auf die beobachteten Differenzspektren sowie die Dynamik haben. Auch für das in jüngster Vergangenheit zur optogenetischen Kontrolle neuronaler Netze eingesetzte eukaryotische Retinalprotein Channelrhodopsin-2 (ChR-2) wurden umfangreiche Photozyklusstudien durchgeführt. Mit Hilfe von transienter Absorptionsspektroskopie im Sichtbaren sowie der Fluoreszenz-aufkonvertierung konnte gezeigt werden, dass der angeregte Zustand monoexponentiell mit 0,4 ps zerfällt. Die Reaktion setzt sich mit einem Kühlprozess und kleineren Änderungen der Linienbreite des K-Photoprodukts fort. Durch die schnelle Deaktivierung des angeregten Zustands war es zudem möglich die direkten Auswirkungen der Retinalisomerisierung auf die Proteinumgebung zu beobachten. Die Vielzahl ausgeprägter Differenzbanden zeigte hierbei, dass neben der schnellen Isomerisierung auch der Energietransfer der im Retinal gespeicherten Überschussenergie an das Protein sehr effizient ist. Über Blitzlichtphotolyseexperimente konnte die Langzeitdynamik des ChR-2-Photozyklus erstmals mit einer sub-µs-Zeitauflösung charakterisiert werden. Neben der für Retinalproteine typischen Abfolge von blau- und rot-verschobenen Intermediaten, ist der Photozyklus mit einer Dauer von etwa 5 s signifikant langsamer als der gemeinhin schon langsame Zyklus der sensorischen Retinalproteine. Um die Aktivierungs-barrieren des ChR-2-Photozyklus zu untersuchen, wurden weiterhin temperaturabhängige Messungen durchgeführt. Diese ergaben, dass der Photozyklus durch entropische Faktoren bestimmt wird. In einem letzten Ansatzpunkt wurde die Imidazol-Abhängigkeit der Langzeitdynamik des ChR-2-Photozyklus untersucht. Es zeigte sich, dass die Dynamik um die De- und Reprotonierung stark von diesem externen Donor beeinflusst wird. Es wurde jedoch nicht nur eine Beschleunigung der Reprotonierungsreaktion beobachtet, sondern auch der molekulare Mechanismus scheint sich nach Zugabe von Imidazol geändert zu haben. Diese Effekte können am ehesten durch eine Verstärkung des Histidin-Donor-Effekts durch das strukturell verwandte Imidazol erklärt werden. Genau dieser Einfluss externer Donor-Moleküle stand ebenfalls in einer Kurzzeit-Studie archaealer Retinalproteine im Fokus. Vorausgegangene Studien konnten zeigen, dass die Zugabe von Azid-Anionen die Isomerisierungsdynamik sowie den nachfolgenden spektral stillen Übergang der Protonenakzeptor-mutante von SRII D75N beeinflusst. Die vorliegende Arbeit stellte heraus, dass dieser Effekt ein einzigartiges Merkmal dieser Mutante ist. Abschließend wurde überdies die Bedeutung des in der Zelle in 2:2-Stöchiometrie beobachteten Transducerkomplexes auf die Primärreaktion von SRII untersucht. Es zeigte sich, dass dieser keinen Einfluss auf die Isomerisierungsdynamik aufweist, was eine wichtige Information bezüglich der Signalweitergabe sensorischer Retinalproteine ist.
Lichtsensitive Proteine bzw. Photorezeptoren eignen sich hervorragend für das Studium des Zusammenhangs von Proteinstruktur und –funktion. Lichtrezeptorproteine werden leicht durch Licht angeregt, wodurch eine gute Zeitauflösung für deren Untersuchung erreicht werden kann. Weiterhin sind sie als Signalproteine während der Etablierung des aktiven Zustandes und dessen Zerfalls großen konformationellen und strukturellen Änderungen unterworfen. Ausgehend von diesen Eigenschaften wurde bereits eine große Zahl von Lichtrezeptorproteinen genauer untersucht. Diese vorliegende Arbeit beschäftigt sich mit lichtinduzierten konformationellen Änderungen in Membranproteinen. Dafür wurden drei verschiedene Systeme herangezogen: das kleine α-helikale Peptid Gramicidin A, der G-Protein gekoppelte Rezeptor Rhodopsin and die BLUF (blue light using FAD) Domäne des hypthetischen Membranproteins Blrp (blue-light regulated phosphodiesterase) aus E. coli. Gramicidin A (gA) ist ein aus dem Bodenbakterium B. brevis isoliertes Antibiotikum, das Transportkanäle für einwertige Kationen wie Lithium, Natrium und Kalium ausbildet. Gelöst in Detergenzmizellen, wurde für gA unerwartet eine Wechselwirkung mit Blaulicht fest gestellt (Abbildung 1). Diese Beobachtung wurde mit statischen und zeitaufgelösten NMRspektroskopischen Methoden genauer untersucht und ist in Kapitel 2 näher beschrieben. Basierend auf den gewonnenen Erkenntnissen wird postuliert, dass einer der Tryptophanreste (Trp9) eine lichtinduzierte konformationelle Änderung erfährt. Ausgehend von der Konformation in Lösung befindet sich die Seitenkette von Trp9 in einem Gleichgewicht (70:30) mit einer zweiten Konformation. Bei der zweiten Konformation handelt es sich möglicherweise um die Orientierung, die der Tryptophanrest unter Festkörper-NMR Bedingungen einnimmt. Die Lebensdauer der neuen Konformation beträgt in etwa eine Sekunde. Der G-Protein gekoppelte Rezeptor Rhodopsin ist verantwortlich für die Verarbeitung von Lichtsignalen in den Stäbchenzellen der Retina. Die Absorption eines einzelnen Photons führt zur Isomerisierung des kovalent gebundenen Chromophors 11-cis-Retinal, wodurch konformationelle Änderungen im Protein veranlasst werden. Der aktivierte Metarhodopsin II (MetaII) Zustand induziert eine Enzymkaskade und schließlich einen Nervenimpuls, das Säugern das Kontrastsehen ermöglicht. Eine große Bandbreite an hochauflösenden NMRspektroskopischen Methoden, (einschließlich zeitaufgelöster und Festkörper-NMR Methoden) wurde im Laufe dieser Arbeit angewandt, um Konformation und Dynamik von bovinem Rhodopsin näher zu untersuchen. In Kapitel 3.1 sind zu Beginn mehrere Optimierungsschritte im Hinblick auf ein kostengünstiges, isotopenmarkiertes Säugerzellenmedium beschrieben. In diesem Zusammenhang wurden mehrere Rhodopsin NMR-Proben hergestellt, wobei der Gehalt an isotopenmarkierten Aminosäuren ca. 50% betrug. Anhand dieser Proben konnte bewiesen werden dass sich mit Lösungs-NMR-Spektroskopie auch sehr große, in Detergenzmizellen stabilisierte Membranproteine (~150 kD Gesamtmasse) detailliert studieren lassen. Die Untersuchungen konzentrierten sich auf den C-Terminus, für den nach sequentieller Zuordnung (Abbildung 2a) und heteronuklearern Relaxationsmessungen ein Mobilitätsverhalten bestimmt wurde, das dem mittelgroßer Proteine ähnelt. Des Weiteren konnten keinerlei definierte Strukturelemente innerhalb des C-Terminus identifiziert werden, u.a. durch einen Vergleich mit eines 19mer Peptids, dessen Primärsequenz des Rhodopsin C-Terminus entspricht (Abbildung 2a und 2b). In Kapitel 3.2 wird die nichtinvasive Zuordnung der Rückgratresonanzen aller fünf Trytophane mit Hilfe einer Kombination aus Lösungs- und Festkörper-NMR beschrieben. Dazu wurden verschiedene Rhodopsinproben hergestellt, die alle möglichen 13C’i-1-Carbonyl/15Ni-Tryptophan isotopenmarkierten Amidpaare enthielten. Eine Teilzuordnung der Tryptophanindolsignale konnte in Lösung durch Protonen-/Deuteriumaustausch und heteronukleare Relaxationsmessungen erreicht werden. Die Ergebnisse legen nahe, dass die Kombination aus Lösungs- und Festkörper-NMR-Spektroskopie sehr gut geeignet ist um komplementäre Informationen zu strukturellen und dynamischen Eigenschaften von Rhodopsin zu liefern. Fehlende Zuordnungen in den Lösungspektren konnten durch den Verglich mit Festkörperspektren ergänzt werden und umgekehrt (Abbildung 3). In Kapitel 3.3 ist die erfolgreiche Adaption der zeitaufgelösten NMR-Spektroskopie für die Untersuchung des Rhodopsin MetaII Zerfalls in vitro beschrieben. Die zeitaufgelösten protonendetektieren NMR-Experimente wurden mit unmarkiertem, in Detergenzmizellen stabilisiertem Protein bei verschiedenen Temperaturen aufgenommen, wobei sich die anschließende Auswertung auf die stark tieffeldverschobene Indolregion konzentrierte (Abbildung 4). Für die berücksichtigten Signale traten nach Induktion des aktivierten Zustandes deutliche chemische Verschiebungsänderungen auf, außerdem zeigten sie unterschiedlich schnellen MetaII Zerfall. Zusätzlich zu der erwarteten Zeitkonstante des MetaII Zerfalls (~6 min bei 298 K) konnte erstmalig eine zweite, ca. zehnmal langsamere Zeitkonstante bestimmt werden. Diese zweite Zeitkonstante ist möglicherweise ein Ausdruck für die langsame Entfaltung von Sekundärstrukturelementen nach dem Zerfall des Proteins in Opsin und Retinal. Die BLUF-Domänen verwenden Flavinadeninnukleotid (FAD) als Chromophor und gehören zu der Familie der Blaulichtrezeptoren. In Kapitel 4 wird die Untersuchung des lichtadaptierten Zustandes der E. coli BLUF Domäne auf Protein- und Ligandenebene mit zeitaufgelösten proton- und phosphordetektierten NMR-Experimenten beschrieben. In Abbildung 5 sind die statischen Licht- und Dunkelspektren (jeweils licht- und dunkeladaptiert) dargestellt. Im Folgenden konnte durch Beobachtung der Dunkeladaption bei verschiedenen Temperaturen die Aktivierungsenergie des Lichtzustandes bestimmt werden. Des Weiteren wurden zum ersten Mal phosphordetektierte NMR-Experimente erfolgreich angewandt, um einen biologisch relevanten Vorgang zeitabhängig näher zu bestimmen.
In der vorliegenden Arbeit wurde der Einfluß der Variation des Oxidationspotentials und der Elektronenkonfiguration ( * gegen n *) auf die zur Löschung von angeregten Triplettzuständen durch O2 führenden Prozesse untersucht. Bei ausreichender Triplettenergie werden neben dem Grundzustand des ursprünglich angeregten Sensibilisators in Konkurrenz O2(1 g ) und O2(1 g) Singulettsauerstoff sowie O2(3 g -) Grundzustandssauerstoff gebildet. Frühere Untersuchungen in diesem Arbeitskreis hatten gezeigt, daß es für * Triplettzustände zwei Desaktivierungskanäle gibt, die beide zu O2(1 g ), O2(1 g) und O2(3 g -) führen. Der eine geht von den bei der Löschung zunächst gebildeten 1,3(T1 3 ) Encounter Komplexen ohne Charge Transfer Stabilisierung aus (nCT). Diese befinden sich in einem vollständig eingestellten spinstatistischen Gleichgewicht, aus dem durch innere Konversion in niedrigere Komplexzustände die Desaktivierung erfolgt. Ein gemeinsames Energielückengesetzt f( E) und damit letztlich die Triplettenergie des Sensibilisators bestimmt die Größe der Geschwindigkeitskonstanten der zu O2(1 g ), O2(1 g) und O2(3 g -) führenden Prozesse in diesem nCT Kanal. Für Sensibilisatoren mit hohem Oxidationspotential und vernachlässigbaren Charge Transfer Wechselwirkungen ist dies der einzige Desaktivierungsprozeß. Mit zunehmender Charge Transfer Wechselwirkung, also mit abnehmendem Oxidationspotential und/oder zunehmender Triplettenergie, wird ein zweiter Desaktivierungskanal geöffnet, der über 1,3(T1 3 ) Komplexe mit Charge Transfer Stabilisierung (pCT) also über Exciplexe führt. Die Exciplexbildung ist der geschwindigkeitsbestimmende Schritt im pCT Kanal. Zur Verbreitung der Datenbasis den T1( *) Sensibilisatoren wurde in dieser Arbeit eine Reihe von mit elektronenziehenden bzw. elektronenschiebenden Gruppen substituierten Fluorenen studiert, bei denen im wesentlichen nur das Oxidationspotential variiert, während die Triplettenergien weitgehend konstant bleiben. Die mit den Fluorenen erhaltener Ergebnisse bestätigen das bisher erarbeitet Zweikanal-Desaktivierungsmodell. Insbesondere wird auch das spinstatistische Gewicht von 1:3 für die Bildung von Singulett zu Triplettsauerstoff im Exciplex Kanal gefunden, das nur mit einem relativ langsamen 1(T1 3 ) 3(T1 3 ) isc Gleichgewicht konsistent ist. Dieses Ergebnis widerspricht der früheren Annahme, wonach ein effizientes isc Gleichgewicht nur zwischen 1,3(T1 3 ) Exciplexen, nicht aber zwischen 1,3(T1 3 ) Encounter Komplexen existieren soll. In der vorliegenden Arbeit wird ein Modell für die 1(T1 3 ) 3(T1 3 ) angeregten Komplexe vorgeschlagen, das in einfacher Weise erklärt, warum das isc zwischen Encounter Komplexen von Sensibilisator und O2 schneller ist, als das zwischen den entsprechenden Exciplexen. Die weitere Analyse der Fluoren Daten zeigt, daß neben dem Oxidationspotential und der Triplettenergie des Sensibilisators auch dessen Struktur die Geschwindigkeitskonstanten beeinflussen kann, allerdings weitaus schwächer als die beiden ersten Einflußgrößen. Mit den Messungen der Geschwindigkeitskonstanten kT 1 , kT 1 und für kT 3 der zu O2(1 g ), O2(1 g) und O2(3 g -) führenden Prozesse für die unterschiedlich substituierten Benzophenonderivate wurde erstmals eine quantitative Untersuchung der Löschung von n * angeregten Triplettzuständen durch O2 durchgeführt. Obwohl für die Benzophenone eine stärkere Variation des Oxidationspotentials bei nahezu konstanter Triplettenergie erreicht werden konnte, wurde im Vergleich zu den * Triplettsensibilisatoren eine wesentlich schwächere Variation von kT 1 , kT 1 und für kT 3 beobachtet. Gleichzeitig liegen die Werte von kT 1 , kT 1 und für kT 3 der Benzophenone mit vernachlässigbarer Charge Transfer Wechselwirkung weit von der für * Triplettsensibilisatoren gefundenen Energielückenbeziehung f( E). Offenbar gilt für n * Triplettsensibilisatoren eine andere Energielückenbeziehung f( E), die viel schwächer von E abhängt. Es konnte gezeigt werden, daß die schwächere Überschußenergieabhängigkeit mit der unterschiedlichen Struktur der 1,3(T1.3 ) Komplexe zusammenhängt. Für 1,3(T1(n *) 3 ) ist eine Vierzentren Struktur, bei der die beiden Sauerstoffatome des O2 Moleküls parallel und benachbart zu den beiden Atomen der angeregten Carbonyl Gruppe liegen, sehr wahrscheinlich. Bei der Desaktivierung der Carbonyleinheit ändern sich die Bindungslängen der Vierzentrenstruktur stark, was einem Übergang zwischen versetzten Potentialkurven mit schwacher Energieabhängigkeit der Franck-Condon Faktoren entspricht. Für 1,3(T1( *) 3 ) Komplexe ist eine supra-supra Struktur anzunehmen, bei der die beiden Sauerstoffatome des O2 Moleküls mit gegenüberliegenden Kohlenstoffatomen eines angeregten aromatischen Rings wechselwirken. Bei der Desaktivierung des aromatischen Rings ändern sich die Bindungslängen nur wenig, so daß man von einem Übergang zwischen übereinander liegenden Potentialkurven mit stärkerer Energieabhängigkeit der Franck-Condon Faktoren sprechen kann. Dies ist der eigentliche Grund für die verschiedenen Energielückenbeziehungen f( E) und f( E) bei der Löschung von * und n * Triplettsensibilsatoren durch O2. Die Variation des Oxidationspotentials und damit der Stärke der Charge Transfer Wechselwirkungen in den 1,3(T1 3 ) Komplexen wird durch unterschiedliche Substitution von aromatischen Ringen mit elektronenziehenden oder elektronenschiebenden Gruppen bewirkt. Da die aromatischen Ringe bei den n * Triplettsensibilisatoren im Gegensatz zu den * Triplettsensibilisatoren nicht Bestandteil des elektronisch angeregten Zentrum sind, fallen die Charge Transfer Effekte bei den n * Triplettsensibilisatoren deutlich schwächer aus als bei den * Triplettsensibilisatoren. Damit konnte in der vorliegende Arbeit erstmals eine konsistente Begründung für das unterschiedliche Verhalten von n * und * Triplettsensibilisatoren bei der Löschung durch O2 gegeben werden.