Refine
Year of publication
Document Type
- Doctoral Thesis (33)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- Antigen carrier (1)
- Binding kinetic (1)
- Corynebakterium efficiens (1)
- Fatty Acid Synthase (1)
- Fatty Acids (1)
- Fatty acid synthases (1)
- Fettsäuresynthase (1)
- Fettsäuresynthase Typ I (1)
- Flavin homeostasis (1)
- Kristallkeimbildung (1)
Institute
Die Paarverteilungsfunktion (PDF) beschreibt die Wahrscheinlichkeit, zwei Atome eines Materials in einem Abstand r voneinander zu finden. Diese Methode bewährt sich seit längerer Zeit zur Untersuchung von Gläsern, Flüssigkeiten, amorphen, stark fehlgeordneten und nanokristallinen anorganischen Substanzen. Die Anwendung für organische Substanzen ist jedoch relativ neu, mit etwa 20 Veröffentlichungen und Patenten insgesamt.
Im Rahmen dieser Dissertation wurden zwei Methoden zur Strukturverfeinerung und Strukturlösung organischer Substanzen anhand von PDF-Daten erfolgreich entwickelt und an diversen Beispielen validiert. Als erster Schritt hierzu wurde eine Methodenverbesserung vorgenommen. Hierbei handelte es sich um eine Verbesserung der Simulation der PDF-Kurven organischer Verbindungen anhand eines gegebenen Strukturmodells. Mit Hilfe der bisherigen Methoden können die PDF-Kurven anorganischer Substanzen erfolgreich simuliert werden. Für organische Substanzen werden bei Anwendung der bisherigen Methode die Signalbreiten der intramolekularen und intermolekularen Beiträge zu der PDF-Kurve falsch wiedergegeben, dies führt zu einer schlechten Anpassung der simulierten PDF-Daten and die experimentellen PDF-Daten. Deshalb wurde ein neuer Ansatz entwickelt, in welchem für die Berechnung der intramolekularen Beiträge zum PDF-Signal ein anderer isotroper Auslenkungsparameter verwendet wurde, als bei der Berechnung der intermolekularen Beiträge zum PDF-Signal. Mit diesem Ansatz konnte eine sehr gute Simulation der PDF-Kurve für alle Testbeispiele erzielt werden. Zur Strukturverfeinerung organischer Substanzen anhand von PDF-Daten wurden zwei Ansätze entwickelt: der Rigid-Body-Ansatz zur Behandlung starrer organischer Moleküle und der Restraint-Ansatz zur Behandlung flexibler organischer Moleküle.
Neben methodischen Entwicklungen wurden in dieser Arbeit zwei weitere Untersuchungen organischer Verbindungen mittels PDF-Analyse durchgeführt.
Es wurden drei, auf unterschiedliche Weise hergestellte, amorphe Proben des Wirkstoffes Telmisartan untersucht. Des Weiteren wurde mittels PDF-Analyse eine pharmazeutische Nanosuspension untersucht.
Protein biosynthesis is a conserved process, essential for life. Proteins are assembled from single amino acids according to their genetic blueprint in the form of a messenger ribonucleic acid (mRNA). Peptide bond formation is catalyzed by ancient ribonucleic acid (RNA) residues within the supramolecular ribosomal complex, which is organized in two dynamic subunits (Ramakrishnan, 2014). Each subunit comprises large ribosomal RNA (rRNA) molecules and several dozens of peripheral proteins. mRNA translation has been divided into three phases, namely translation initiation, elongation and termination in biochemistry textbooks. During initiation, the ribosomal subunits assemble into a functional ribosome on an activated mRNA and acquire the first transfer RNA (tRNA), an adapter between the start codon on the mRNA and the N-terminal methionine of the protein (Hinnebusch and Lorsch, 2012). During elongation, the ribosome translocates along the mRNA exposing one codon after the other, and amino acids are delivered to the ribosome by the respective tRNAs, and attached to the nascent polypeptide chain. During termination, the polypeptide is released and the ribosome remains loaded with mRNA and tRNA at the end of the open reading frame for the translated gene (Hellen, 2018). Bacterial ribosomes are subsequently recycled by a specific ribosome recycling factor and the small ribosomal subunit is simultaneously consigned to initiation factors for a next round of translation – rendering bacterial translation as a cyclic process with an additional ribosome recycling phase. However, the process of ribosome recycling remained enigmatic in Eukarya and Archaea until the simultaneous discovery of the twin-ATPase ABCE1 as the major ribosome recycling factor. Strikingly, ABCE1 has initially been shown to participate in translation initiation (Nürenberg and Tampé, 2013). Thus, closing the translation cycle by revealing the detailed molecular mechanism of ABCE1 and its role for translation initiation are the two goals of this research.
Beyond the plenitude of well-studied translational GTPases, ABCE1 is the only essential factor energized by ATP, delivering the energy for ribosome splitting via two nucleotide-binding sites. Here, I define how allosterically coupled ATP binding and hydrolysis events in ABCE1 empower ribosome recycling. ATP occlusion in the low-turnover control site II promotes formation of the pre-splitting complex and facilitates ATP engagement in the high-turnover site I, which in turn drives the structural re- organization required for ribosome splitting. ATP hydrolysis and ensuing release of ABCE1 from the small subunit terminate the post-splitting complex. Thus, ABCE1 runs through an allosterically coupled cycle of closure and opening at both sites consistent with a processive clamp model. This study delineates the inner mechanics of ABCE1 and reveals why various ABCE1 mutants lead to defects in cell homeostasis, growth, and differentiation (Nürenberg-Goloub et al., 2018).
Additionally, a high-resolution cryo-electron microscopy (EM) structure of the archaeal post-splitting complex was obtained, revealing a central macromolecular assembly at the crossover of ribosome recycling and translation initiation. Conserved interactions between ABCE1 and the small ribosomal subunit resemble the eukaryotic complex (Heuer et al., 2017). The conformational state of ABCE1 at the post-splitting complex confirms the molecular mechanism of ribosome recycling uncovered in this study. Moving further along the reaction coordinate of cellular translation, I reconstitute the complete archaeal translation initiation pathway and show that essential archaeal initiation factors are recruited to the post-splitting complex by biochemical methods and cryo-EM structures at intermediate resolution. Thus, the archaeal translation cycle is closed, following its bacterial model and paving the way for a deeper understanding of protein biosynthesis.
Die chemischen und physikalischen Eigenschaften eines Festkörpers sind vom inneren Aufbau des Festkörpers abhängig. Die Methode der Wahl zur Bestimmung von Kristallstrukturen sind Beugungsexperimente. Fehlordnungen in den Kristallstrukturen werden mit Beugungsexperimenten häufig nur unzureichend ausgewertet oder ignoriert. In dieser Arbeit wurden die (möglichen) Stapelfehlordnungen der Aminosäuren DL-Norleucin und DL-Methionin, sowie von Chloro (phthalocyaninato)aluminium(III) untersucht. Dazu wurden Gitterenergieminimierungen mit Kraftfeld- und quantenchemischen Methoden an einem Satz geordneter Modellstrukturen durchgeführt.
In den Kristallstrukturen der α- und β-Phasen von DL-Norleucin ordnen sich die Moleküle in Doppelschichten an und bilden jeweils eine Schichtstruktur mit unterschiedlicher Stapelsequenz. Röntgenbeugungsexperimente an Kristallen dieser Verbindung zeigen charakteristische diffuse Streuung. Die durchgeführten Gitterenergieminimierungen reproduzieren die experimentelle Stabilitätenreihenfolge der beiden Polymorphe von DL-Norleucin. Die berechneten Gitterenergien zeigen, dass es für DL-Norleucin bevorzugte Stapelsequenzen gibt. Die Gitterenergien und Molekülstrukturen einer einzelnen Doppelschicht sind dabei von der Anordnung benachbarter Doppelschichten abhängig. Zudem wurden Strukturmodelle mit Stapelsequenzen aufgebaut, die aus kristallographischer Sicht möglich sind, jedoch experimentell nicht beobachtet wurden, und deren Gitterenergie berechnet. Diese Stapelsequenzen liefern im Vergleich zu den energetisch günstigsten Stapelsequenzen einen signifikanten Energieverlust und treten daher selten auf. Ausgehend von den Ergebnissen der Gitterenergieminimierungen mit DFT-D-Methoden wurden Stapelwahrscheinlichkeiten mit Hilfe der Boltzmann-Statistik berechnet. Es wurde ein großes geordnetes Modell mit einer Stapelsequenz gemäß der Stapelwahrscheinlichkeiten aufgebaut. Dieses Modell wurde verwendet, um Beugungsexperimente zu simulieren und mit experimentellen Daten zu vergleichen. Die theoretischen und experimentellen Beugungsdaten waren in guter Übereinstimmung.
Die Moleküle in den Kristallstrukturen der α- und β-Phasen von DL-Methionin bilden Doppelschichten. Die beiden Phasen unterscheiden sich in der Stapelung der Doppelschichten und der Molekülkonformation. Es wurden Gitterenergieminimierungen sowohl mit Kraftfeld-Methoden als auch mit DFT-DMethoden an geordneten Modellen mit unterschiedlichen Stapelsequenzendurchgeführt. Die experimentell bestimmte Stabilitätenreihenfolge der Polymorphe von DL-Methionin bei tiefen Temperaturen wurde durch die Ergebnisse der kraftfeldbasierten Rechnungen reproduziert. Die Modellstrukturen wurden während den Rechnungen moderat verzerrt. Die Bandbreite der relativen Energien aller Modelle ist relativ gering, sodass eine Stapelfehlordnung aus thermodynamischer Sicht nicht ausgeschlossen werden kann. In der Regel liefern Gitterenergieminimierungen mit DFT-D Methoden genauere Ergebnisse. Die Modellstrukturen wurden während den Rechnungen nur leicht verzerrt. Allerdings unterscheidet sich das Energieranking zwischen den Kraftfeld- und DFT-D-Methoden deutlich. Die experimentell bestimmte Stabilitätenreihenfolge der Polymorphe von DL-Methionin wurde mit DFT-D-Methoden nicht reproduziert. Die Energieunterschiede zwischen den beiden Polymorphen (ΔE = 1,60 kJ∙mol−1 (DFT-D2) bzw. ΔE = 0,83 kJ∙mol−1 (DFT-D3)) sind relativ gering und liegen im Fehlerbereich der Methode. Die Bandbreite der relativen Energien aller Strukturmodelle beträgt nur etwa 1,8 kJ∙mol−1. Auf dieser Grundlage ist eine Stapelfehlordnung in den Kristallstrukturen von DL-Methionin möglich, jedoch nicht experimentell beobachtet. Nicht nur die Kraftfeld-,sondern auch die DFT-D-Methoden scheinen für die Berechnung der Gitterenergien für das System DL-Methionin nicht genügend genau zu sein. Die erhaltenen relativen Energien sollten daher mit Vorsicht betrachtet werden.
Chloro(phthalocyaninato)aluminium(III) (AlPcCl) bildet eine Schichtstruktur, in der sich die Moleküle zu Doppelschichten zusammenlagern. Die 1984 durchgeführte Kristallstrukturbestimmung [98] lieferte auf Grund der schlechten Datenqualität nur eine ungenaue Kristallstruktur. Die asymmetrische Einheit enthält zwei Moleküle, von denen das eine Molekül geordnet, das andere fehlgeordnet ist. Die Kristallstruktur von AlPcCl ist fehlgeordnet, weil eine einzelne Doppelschicht von Molekülen eine tetragonale P4/n-Symmetrie aufweist, die vier symmetrieäquivalente Möglichkeiten bietet, eine zweite Doppelschicht auf einer ersten Doppelschicht zu platzieren. Mit Hilfe der OD-Theorie wurde ein Satz geordneter Modelle mit verschiedenen Stapelsequenzen aufgestellt und die Gitterenergie zunächst mit Kraftfeld-Methoden und anschließend mit DFT-DMethoden berechnet. Auf Grund unzureichender Parametrisierung, musste das Kraftfeld an das System AlPcCl angepasst werden. Die Modellstrukturen werden während den Kraftfeld-Rechnungen nur leicht verzerrt. Die berechneten Gitterenergien hängen allerdings stark von der verwendeten Parametrisierung und den Atomladungen ab und sollten daher mit Vorsicht betrachtet werden. Genauere Ergebnisse erzielten Gitterenergieminimierungen mit DFT-D-Methoden. Die verschiedenen Stapelsequenzen haben eine ähnliche Energie, was die Stapelfehlordnung in der Kristallstruktur von AlPcCl erklärt. Die Überlagerung der vier energetisch günstigsten geordneten Stapelsequenzen führt zu einer gemittelten Struktur, die sehr gut die fehlgeordnete experimentelle Kristallstruktur von AlPcCl erklärt.
Ziel dieser Doktorarbeit war es, die Bedeutung der Kristallstrukturbestimmung aus Pulverdaten (SDPD) herauszuarbeiten und etwaige Grenzen durch neue Methodenentwicklungen zu erweitern, insbesondere bei Analyse der Paarverteilungsfunktion (PDF).
Die Effizienz der SDPD konnte anhand der erfolgreich gelösten Kristallstruktur von Carmustin (1,3 Bis-2-chlorethyl-1-nitrosoharnstoff, C5H9Cl2N3O2) aufgezeigt werden. [CS01]
Die Grenzen der SDPD wurden ausgelotet und erfolgreich erweitert. Nach weit verbreiteter kristallographischer Meinung ist die Strukturlösung mittels des simulierten Temperns (simulated annealing, SA) bei mehr als 25 zu bestimmenden Parametern problematisch oder unmöglich. Die pharmazeutischen Salze Lamivudin-Camphersulfonat (LC) und Aminogluthethimid-Camphersulfonat (AC) konnten, trotz ihrer hohen Anzahl an Freiheitsgraden von 31 für LC bzw. 37 für AC erfolgreich bestimmt werden. Die Strukturlösung von AC war herausfordernd und nicht direkt bei Anwendung der SA-Methode möglich. Nach einer intensiven Fehleranalyse stellte sich heraus, dass nicht die Grenzen der SA-Methode ausschlaggebend für das anfängliche Scheitern der Strukturlösung waren, sondern falsch extrahierte Intensitäten des vorangegangenen Pawley-Fits. Nach Behebung dieser Fehlerquelle war die Strukturlösung von AC problemlos. [CS02]
Mittels SDPD kann die absolute Konfiguration chiraler Verbindungen nicht direkt bestimmt werden. Durch Kristallisation der zu bestimmenden chiralen Verbindung mit einem chiralen Gegenion bekannter Konformation in einer simplen Säure-Base-Reaktion zu einem diastereomeren Salz und nachfolgender SDPD konnte eine neue Methode entwickelt werden, um die Konfigurationsbestimmung aus Pulverdaten zu ermöglichen. Diese Methode wurde anhand der drei pharmazeutischen Salze (R)-Flurbiprofen-(R)-Chinin (FQ), (2R5S)-Lamivudin-(R)-Camphersulfonat (LC) und (R)-Aminogluthethimid-(R)-Camphersulfonat (AC) aufgezeigt: In allen drei Fällen konnte die korrekte Konfiguration des pharmazeutischen Wirkstoffes mit den hierfür entwickelten Kriterien erfolgreich bestimmt werden. [CS03, CS04]
Durch Kombination der klassischen SDPD mit neuen methodischen Ansätzen konnten die Kristallstrukturen der schlecht kristallinen organischen Pigmente 2-Monomethylchinacridon (MMC, C21H14N2O2) und 4,11-Difluorchinacridon (DFC, C20H10N2O2F2) bestimmt werden, obwohl aufgrund ihrer geringen Kristallqualität keine sinnvolle Indizierung möglich war.
Für die Kristallstrukturbestimmung von DFC lieferte der neu entwickelte Global-Fit des Programms FIDEL mögliche Strukturmodelle mit ähnlich guter Übereinstimmung an das experimentelle Pulverdiagramm. Die Rietveld-Verfeinerung der Strukturmodelle in Kombination mit der Anpassung der Kristallstruktur an die PDF-Daten und kraftfeldbasierter Gitterenergieminimierung konnte einen geeigneten Strukturrepräsentanten von DFC liefern. [CS05, CS06]
Im Fall von MMC war eine Kombination der Methoden von Rietveld-Verfeinerung, Verfeinerung an die PDF-Daten und Gitterenergieminimierung zielführend zur Bestimmung der Orientierungs-Fehlordnung von MMC im Kristall. MMC ist hierbei die erste organische Verbindung, deren Fehlordnung durch Anpassung an die PDF bestimmt werden konnte. [CS07]
Große Erfolge konnten bei der Methodenentwicklung der PDF-Analyse erzielt werden. Die Bestimmung von Kristallstruktur organischer Verbindungen durch Anpassung an die PDF ohne vorherige Kenntnis der Gitterparameter oder Raumgruppe wurde durch die Entwicklung des PDF-Global-Fits erreicht. Lediglich die PDF-Kurve und eine Molekülstruktur werden als Input benötigt. Die Strukturlösung beruht auf einem globalen Optimierungs-Ansatz, bei welchem in ausgewählten Raumgruppen Zufallsstrukturen erzeugt werden. Die Zufallsstrukturen werden mit den experi¬mentellen Daten verglichen und entsprechend ihres Ähnlichkeitsindexes, basierend auf der Kreuz-Korrelation, sortiert. [CS08, CS09] Die vielversprechendsten Kandidaten werden in einem einge¬schränkten simulierten annealing-Ansatz an die experimentelle PDF angepasst. Eine nachfolgende Strukturverfeinerung der besten Strukturmodelle liefert die korrekte Kristallstruktur. Der Erfolg des PDF-Global-Fits wurde am Beispiel der Barbitursäure aufgezeigt: Ausgehend von 300 000 Zufallsstrukturen konnte die korrekte Kristallstruktur von Barbitursäure bestimmt werden. Barbitursäure ist hierdurch die erste organische Verbindung, deren Lokalstruktur durch Anpassung an die PDF bestimmt wurde, ohne Input oder Vorgabe von Gitterparametern oder Raumgruppe.[CS10]
Physical Biology is a field of life sciences dealing with the extraction of quantitative data from biophysical or molecular biological experiments with different levels of complexity. Such data are further used as parameters for mathematical models of the biological system. These models allow to predict reactions on external stimuli by describing the relevant molecular interactions and are therefore used for example to generate a deeper comprehension of complex human diseases. An essential technique in biophysical research on human diseases is fluorescence microscopy. This is a constantly developed toolbox comprising a large number of specific labeling strategies, as well as a broad spectrum of fluorescent probes. It is further minimal invasive and therefore suitable for measurements in living cells or organisms. The sensitivity of modern photo-detectors even allows for the detection of a single fluorescent probe with an accuracy of approximately 10 nm.
...
The model-prediction was further verified by two color SMLM experiments. In this work the development and application of imaging-systems are described which provide quantitative data with single-molecule resolution for systems biological model approaches with a low degree of abstractness. In the near future, the impact of mathematical models in the research field of complex human diseases will increase. The predictions of these models will be more exact, the more detailed and accurate the input parameters will become. This work gives an impression of how quantitative data obtained by SMLM may serve as input parameters for mathematical models at the single-cell level.
This work comprises the investigation of four different biosynthesis gene clusters from Xenorhabdus. Xenorhabdus is an entomopathogenic bacterium that lives in mutualistic symbiosis with its Steinernema nematode host and together they infect and kill insect larvae. Xenorhabdus is well known for the production of so-called specialised metabolites and many of these compounds are synthesised by non-ribosomal peptide synthetases (NRPSs) or NRPS-polyketide synthase (PKS)-hybrids. These enzymes are organised in a modular manner and produce structurally very diverse molecules, often with the help of modifying domains and tailoring enzymes. In general, the genes involved in the biosynthesis are organised in so-called biosynthetic gene clusters (BGCs) in the genome of the producing strain. Exchanging the native promoter with an inducible promoter, e.g. PBAD, allows the targeted activation of the BGC and in turn the analysis of the biosynthesis product via LC-MS analysis.
The first BGC investigated in this work is responsible for the biosynthesis of xenofuranones. Based on gene deletions, this work shows that the NRPS-like enzyme XfsA produces a carboxylated furanone intermediate which is subsequently decarboxylated by XfsB to yield xenofuranone B. The next step in xenofuranone biosynthesis is the O-methylation of xenofuranone B to yield xenofuranone A. A comparative proteomics approach allowed the identification of four methyltransferase candidates and subsequent gene deletions confirmed one of the candidates to be responsible for methylation of xenofuranone B. The proteome analysis was based on the comparison of X. szentirmaii WT and X. szentirmaii Δhfq because distinct levels of the methylated xenofuranone A were observed when the xfs BGC was activated in either WT or Δhfq strain. Hfq is a global transcriptional regulator whose deletion is associated with the down regulation of natural product biosynthesis in Xenorhabdus. The strong PBAD activation of the xfs BGC also allowed the detection of two novel xenofuranone derivatives which arise from incorporation of one 4-hydroxyphenylpyruvic acid as first or second building block, respectively.
PBAD based activation of the second BGC addressed in this work lead to the detection of a novel metabolite and compound purification allowed NMR-based structure elucidation. The molecule exhibits two pyrrolizidine moieties and was named pyrrolizwilline (pyrrolizidine + twin (German: “Zwilling”)). The BGC comprises seven genes and single gene deletions as well as heterologous expression in E. coli and NRPS engineering were conducted to investigate the biosynthesis. The first two genes xhpA and xhpB encode a bimodular NRPS and a monooxygenase which synthesise a pyrrolizixenamide-like structure, similar to PxaA and PxaB in pyrrolizixenamide biosynthesis. It is suggested that the acyl side chain incorporated by XhpA is removed by the α,β-hydrolase XhpG. The keto function is then reduced by two subsequent two electron reductions catalysed by XhpC and XhpD. One of these two reduced pyrrolizidine units most likely is extended with glyoxalate prior to non-enzymatic dimerisation with the second pyrrolizidine moiety. To finally yield pyrrolizwilline, L-valine is incorporated, probably by the free-standing condensation domain XhpF.
The third BGC investigated is responsible for the production of a tripeptide composed of β-D-homoserine, α-hydroxyglycine and L-valine and is referred to as glyoxpeptide. This work demonstrates that the previously observed glyoxpeptide derivative is derived from glycerol present in the culture medium. Furthermore, this work shows that the monooxygenase domain, which is found in an unusual position between motifs A8 and A9 within the adenylation domain, is responsible for the α-hydroxylation of glycine. It is suggested that the α-hydroxylation of glycine renders the tripeptide prone to hydrolysis via hemiacetal formation. Hence, the XgsC_MonoOx domain might be an interesting candidate for further NRPS engineering.
The fourth BGC addressed is responsible for the production of xildivalines and this work describes two additional derivatives which are detected only when the promoter is exchanged and activated in the X. hominickii WT strain but not in X. hominickii Δhfq. Deletion of the methyltransferase encoding gene xisE results in the production of non-methylated xildivalines. It remains to be determined when the N-methylation of L-valine takes place. It is discussed that the methyltransferase could act on the NRPS released product but also during the assembly. The peptide deformylase is not involved in the proposed biosynthesis as xildivaline production is detected in a ΔxisD strain. The PKS XisB features two adjacent, so-called tandem T domains. The inactivation of the first or the second T domain by point mutation causes decreased production titres of detected xildivalines in the respective mutant strain when compared to the wild type.
Development and implementation of novel optogenetic tools in the nematode Caenorhabditis elegans
(2016)
Optogenetics, though still only a decade old field, has revolutionized research in neurobiology. It comprises of methods that allow control of neural activity by light in a minimally-invasive, spatio-temporally precise and genetically targeted manner. The optogenetic actuators or the genetically encoded light sensitive elements mediate light driven manipulation of membrane potential, intracellular signalling, neuronal network activity and behaviour (Fenno et al. 2011; Dugué et al. 2012). These techniques have been particularly useful for dissecting neural circuits and behaviour in the transparent and genetically amenable nematode model system Caenorhabditis elegans (Husson et al. 2013; Fang-yen et al. 2015).
In fact, C. elegans was the first living organism in which microbial rhodopsin based optogenetic tools (Channelrhodopsin-2 or ChR2, and Halorhodopsin or NpHR) were successfully implemented and bimodal 'remote' control of behaviour was achieved (Nagel et al. 2005; Zhang et al. 2007). Since then it has been a prominent model for the development and application of novel optogenetic tools and techniques, especially in the nervous system which comprises of 302 neurons and is organised in a hierarchical organization. The environmental stimuli are sensed by the sensory neurons, leading to the processing of information by the downstream interneurons, that relay to motor neurons which in-turn synapse onto muscles that drive the movement-based responses.
The microbial rhodopsins like ChR2 and NpHR mediate light driven depolarization and hyperpolarization, respectively and thereby activate or inhibit neural activity. However, they do not allow local control of membrane potential as they are expressed all over the plasma membrane of the cell rather than being restricted to specific domains, for example synaptic sites. Moreover, they completely over-ride the intrinsic activity of the cell, completely bypassing the signal transduction processes inside the cell. Thus, in order to study intracellular signalling and to answer questions pertaining to the endogenous role of receptors and channels in an in-vivo context, the optogenetic tool-kit needs to be expanded.
This thesis aimed at developing and implementing novel optogenetic tools in C. elegans that allow for sub-cellular signalling control as well as endogenous receptor control. These are: two light activated guanylyl cyclases (bPGC and BeCyclOp) to modify cyclic guanosine monophosphate (cGMP) mediated signalling in the sensory neurons, as well as attempts towards rendering endogenous C. elegans receptors - glutamate receptor (GLR-3/-6), acetylcholine receptor (ACR-16), glutamate gated chloride channel (GLC-1) light switchable and to understand their biological function in-vivo.
Organisms respond to sensory cues by activation of a primary receptor followed by relay of information downstream to effector targets by secondary signalling molecules. cGMP is a widely used 2nd messenger in cellular signaling, acting via protein kinase G or cyclic nucleotide gated (CNG) channels. In sensory neurons, cGMP allows for signal modulation and amplification, before depolarization. Chemo-, thermo-, and oxygen-sensation in C. elegans involve sensory neurons that use cGMP as the main 2nd messenger. For example, ASJ is the pheromone sensing neuron regulating larval development, AWC is the chemosensory neuron responding to volatile odours and BAG senses oxygen and carbon dioxide in the environment. In these neurons, cGMP acts downstream of the GPCRs and functions by activating cationic TAX-2/-4 CNG channels, thereby depolarising the sensory neuron. Manipulating cGMP levels is required to access signalling between sensation and sensory neuron depolarization, thereby provide insights into signal encoding. We achieve this by implementing two photo-activatable guanylyl cyclases - 1) a mutated version of Beggiatoa sp. bacterial light-activated adenylyl cyclase, with specificity for GTP (Ryu et al. 2010), termed BlgC or bPGC (Beggiatoa photoactivated guanylyl cyclase) and 2) guanylyl cyclase rhodopsin (Avelar et al. 2014) from Blastocladiella emersonii (BeCyclOp).
bPGC is a BLUF (blue light sensing using flavin) domain containing cyclase which uses FAD as the co-factor and catalyses the synthesis of cGMP from GTP upon activation by blue light. Prior to implementation in sensory neurons, a simpler heterologous system with co-expression of the TAX-2/-4 CNG channel in C. elegans body wall muscle (BWM) was used. The cGMP generated by the light activated cyclases activates the CNG channel leading to the muscle depolarization, thereby causing changes in body length which can be easily scored.
The baker’s yeast Saccharomyces cerevisiae is a valuable and increasingly important microorganism for industrial applications (Hong and Nielsen, 2012). Its robustness concerning process conditions like low pH, osmotic and mechanical stress as well as toxic compounds is an advantage. Moreover, S. cerevisiae is ‘generally regarded as safe’ (GRAS). The model organism has been studied intensively. The collected data, including genomic, proteomic and metabolic information, can be used to genetically modify and improve its metabolism. Fatty acids and fatty acid derivatives have wide applications as biofuels, biomaterials, and other biochemicals. Several studies have been dealing with the overproduction of fatty acids and derivatives thereof in S. cerevisiae. The fatty acid biosynthesis starting with acetyl-CoA requires two enzymes, the acetyl-CoA carboxylase (Acc1p) and the fatty acid synthase complex (FAS), to produce acyl-CoA esters with predominantly 16 to 18 carbon atoms chain length (Lynen et al., 1980). For the synthesis of monounsaturated fatty acids in S. cerevisiae the ER bound acyl-CoA desaturase, Ole1p is essential (Tamura et al., 1976; Certik and Shimizu, 1999).
Using S. cerevisiae, the first section of this work dealt with the heterologous characterization of potential ω1-desaturases. Due to the fact that unsaturated fatty compounds can be modified further by hydrosilylations, hydrovinylations, oxidations to epoxides, acids, aldehydes, ketones or metathesis reactions, the interest in ω1-fatty acids is tremendous (Behr and Gomes, 2010). With the intention to find enzymes in fungi, that have a terminal desaturase activity a search in different genome databases was performed. The sequences of Pex-Desat3 and Obr-TerDes were used as reference sequences. The analysed proteins from Schizophyllum commune (EFI94599.1), Schizosaccharomyces octosporus (EPX72095.1), Wallemia mellicola (EIM20316.1), Wallemia ichthyophaga (EOR00207.1) and Agaricus bisporus var. bisporus (EKV44635.1), however, finally turned out to be Δ9 desaturases. A fungal desaturase with ω1-activity could not be found. The Δ9 desaturase SCD1 from Mus musculus was crystallized by Bai et al. (2015) and the information for specific amino acids responsible for the substrate specificity or enzyme activity were allocated. In combination with sequence and enzyme activity data form ChDes1 from Calanus hyperboreus, Desat2 from Drosophila melanogaster, Pex-Desat3 from Planotortrix excessana and Obr-TerDes from Operophtera brumata single amino acid exchanges were performed in the Δ9 desaturase Ole1p from S. cerevisiae. For all mutants, only fatty acids (C16 - C18) with a double bond between carbon C9 and C10 could be found. This indicates, that all inserted amino acid exchanges do not affect the substrate specificity or the position of the introduced double bond.
In the second section the focus was in the development of a production system for fatty acids in S. cerevisiae with regard to the previously established procedures by metabolic engineering. The combination of cytosolic malate dehydrogenase (MDH3), cytosolic malate enzyme (MAE1) and a citrate- α-ketoglutarate- carrier (YHM2) should improve the availability of acetyl-CoA in the cytosol, which is an important precursor for the fatty acid biosynthesis. If the major pathway (acetyl-CoA carboxylase and fatty acid synthase) was already optimized by high expression levels than no positive effect on increased fatty acid synthesis was detectable. Only non-optimized strains, with the additional overexpression of ATP-citrate lyase and cytosolic malate dehydrogenase, lead to a 41 % (20 mg/g dcw) improvement of fatty acid synthesis. In order to increase the fatty acid content further, the additional overexpression of DGA1 and TGL3 was performed. Hence, the highest amount of fatty acids could be observed with the strain S. cerevisiae WRY1ΔFAA1ΔFAA4 (2.5 g/L ± 0.8 g/L). The additional elimination of acyl-CoA synthetase Fat1p did not improve the yield.
It was recently reported, that chain length control of the fatty acid synthesis of bacterial FAS can be changed by rational engineering (Gajewski et al., 2017a). The knowledge about bacterial FAS was transferred in this work to S. cerevisiae FAS. Mutating up to five amino acids in the FAS complex enabled S. cerevisiae to produce medium chain fatty acids (C6 - C12). Further improvement was done by metabolic pathway engineering (promoter of alcohol dehydrogenase II from S. cerevisiae (pADH2), deletion of acyl-CoA synthetase FAA2) and optimization of fermentation conditions (YEPD-bacto medium buffered with potassium phosphate). The production of medium chain fatty acids resulted in the highest yield of 464 mg/L (C6 to C12 fatty acids). Furthermore, strains were created specifically overproducing hexanoic acid (158 mg/L) and octanoic acid (301 mg/L). The characterization of transferases, which could be responsible for the de-esterification of CoA-bound fatty acids, was analysed in an additional approach. It could be shown, that the genes EHT1, EEB1 and MGL2 have an influence on the MCFA yield in the supernatant. Generally speaking, the data from the single and double deletion strains suggest that Eeb1p has a selective hydrolytic activity for hexanoic acid-CoA ester, while Eht1p shows selective hydrolytic activity for octanoic acid-CoA ester, which is in line with Saerens et al. (2006).
Um molekulare Mechanismen in biologischen Prozessen zu verstehen, ist es unerlässlich biologisch aktive Verbindungen zu kontrollieren. Dabei spielt besonders die Aktivierung bzw. Desaktivierung von Genabschnitten eine zentrale Rolle in der gegenwärtigen chemischen, biologischen und medizinischen Forschung. Nukleinsäuren sind dabei offenkundige Zielmoleküle, da sie die Genexpression auf unterster Ebene regulieren und auf vielfältige Art und Weise an biologischen Prozessen beteiligt sind. Um solch eine genaue Steuerung zu erreichen, werden Nukleinsäuren häufig photolabil modifiziert und unter die Kontrolle von Licht gebracht. Da hochentwickelte Technologien es erlauben Photonen bestimmter Energie unter präziser räumlicher und zeitlicher Auflösung zu dosieren, ist Licht als nicht invasives Triggersignal ein besonders geeignetes Werkzeug um molekulare Prozesse zu kontrollieren.
Die Verwendung photolabiler Schutzgruppen („cage“) ermöglicht es, diese lichtaktivierbaren Nukleinsäuren („caged compound“) herzustellen. Üblicherweise werden Oligonukleotide damit an funktionsbestimmenden Stellen versehen, woraufhin die Funktion der Oligonukleotide unterdrückt wird. Die biologische Aktivität kann durch Bestrahlung mit Licht wieder hergestellt werden, da die photolabile Schutzgruppe durch den Lichtimpuls abgespalten wird. Neben der zeitweiligen Maskierung der Nukleinsäureaktivität existiert auch eine Methode, die als „photoaktivierbarer Strangbruch“ (‘‘caged strand break‘‘) bezeichnet wird. Dabei werden mit Hilfe von photolabilen Linkern (‘‘Verknüpfer‘‘) lichtinduzierte Strangbrüche in Oligonukleotiden ausgelöst, um so beispielsweise die Struktur eines Nukleinsäurestrangs zu zerstören. Die Idee der photoaktivierbaren Strangbrüche ist nicht neu, dennoch werden photolabile Schutzgruppen überwiegend nach der erstgenannten Strategie verwendet. Im Rahmen dieses Promotionsvorhabens wurden neue photosensitive Linkerbausteine für Oligonukleotide entwickelt und hergestellt, welche sich vor allem im Hinblick auf die Anwendbarkeit in lebenden biologischen Systemen von den bisherigen photolabilen Linkern unterscheiden.
Im ersten Projekt wurde ein nicht-nukleosidischer, photolabiler Linker, basierend auf dem Cumaringrundgerüst, entwickelt. Das Ziel war hier, vor allem, einen zweiphotonenaktiven Linker für biologische Anwendungen und Zweiphotonen-Fragestellungen nutzbar zu machen. Bisherige Zweiphotonen-Linker konnten hauptsächlich nur für Proteinverknüpfungen bzw. Neurotransmitter verwendet werden oder mussten chemisch umständlich (z.B. Click-Chemie) und postsynthetisch in Oligonukleotide eingeführt werden. Der neu entwickelte Zweiphotonen-Linker wurde als Phosphoramiditbaustein für die Oligonukelotid-Festphasensynthese synthetisiert, was einen problemlosen und automatisierten Einbau garantiert. Mit einem modifizierten Oligonukleotid konnten die photochemischen Eigenschaften des Linkers bestimmt und mit Hilfe eines fluoreszenzbasierten Verdrängungsassays und Lasertechniken der Zweiphotonen-Effekt visualisiert werden. Dazu wurde ein Hairpin-DNA-Strang hergestellt, welcher eine Linkermodifikation im Bereich der Loopregion enthält. Durch eine Thiolmodifikation am 5‘-Ende des Oligonukleotidstranges war es möglich, diesen in einem Maleimid-funktionalisierten Hydrogel zu fixieren. Ein DNA-Duplex mit einem Fluorophor/Quencherpaar und einer korrespondierenden Sequenz zum modifizierten Hairpin-Strang wurde ebenfalls dem System zugegeben, allerdings wurde dieser nicht fixiert, um Diffusion zu ermöglichen. Durch die räumliche Nähe des Fluorophors zum Quencher konnte im unbelichteten Zustand zunächst keine Fluoreszenz gemessen werden. Mit einem (Femtosekunden-)gepulsten Laser und dem damit verbundenen Bindungsbruch im Hairpin-Strang durch Zweiphotonen-Effekte wurde es dem fluoreszierenden Strang des DNA-Duplex ermöglicht, sich vom Quencher-Strang zu lösen und an den fixierten Strang zu hybridisieren. Das Photolyse-Ereignis konnte so in ein lokales Fluoreszenzsignal übersetzt und detektiert werden.
Der eindeutige Beweis, dass es sich tatsächlich um ein Zweiphotonen-induziertes Ereignis handelt, konnte durch die dreidimensional aufgelöste Photolyse und über die quadratische Anhängigkeit des Fluoreszenzsignals von der eingestrahlten Laserleistung erbracht werden.
Die generelle Kompatibilität des Cumarin-Linkers mit biologischen Systemen konnte in Zellkulturexperimenten gezeigt werden. Dazu wurde eine Transkriptionsfaktor-DNA Decoy-Strategie entwickelt, in der Linker-modifizierte DNA Decoys an regulatorische Transkriptionsfaktoren binden und diese aber auch photochemisch wieder freisetzen können („catch and release-Strategie“). Zellkulturexperimente, um mit dieser Methode das Transkriptionsfaktor-gesteuerte und endogene Gen für Cyclooxygenase-2 (COX2) zu regulieren, lieferten keine aussagekräftigen Ergebnisse. Daher wurden die verwendeten Zellen dahingehend manipuliert, sodass sie das Protein GFP (grün fluoreszierendes Protein) in Abhängigkeit von der Anwesenheit eines Transkriptionsfaktors exprimieren. Das so durch die Zellen verursachte Fluoreszenzsignal steht in direkter Abhängigkeit zur Decoy-Aktivität. Mit Hilfe modifizierter GFP-Decoys konnte hierbei eine Regulation auf Transkriptionsebene in biologischen Organismen erreicht werden. Mit dem Electrophoretic Mobility Shift Assay (EMSA), einer molekularbiologischen in vitro-Analysetechnik, wurden die Interaktionen zwischen modifizierten Decoys und dem Transkriptionsfaktor untersucht.
...
Bacteria are highly organized organisms which are able to adapt to and propagate under a multitude of environmental conditions. Propagation hereby requires reliable chromosome replication and segregation which has to occur cooperatively with other cellular processes such as transcription, translation or signaling. Several mechanisms were proposed for segregation of the Escherichia coli (E. coli) chromosome, for example a mitotic-like active segregation model or entropy-based passive chromosome segregation. Another segregation model suggests coupled transcription, translation and insertion of membrane proteins (termed "transertion"), which links the replicating chromosome (nucleoid) to the growing cell cylinder.
Fluorescence microscopy was widely used to provide evidence for a distinct segregation model. However, the dynamic nature of bacterial chromosomes, the small bacterial size and the optical resolution limit of ~ 200-300 nm impair unveiling the underlying mechanisms. With the emergence of super-resolution fluorescence microscopy techniques and advanced labeling methods, a new toolbox became available enabling scientists to visualize biomolecules and cellular processes in unprecedented detail. Single-molecule localization microscopy (SMLM) represents a set of super-resolution microscopy techniques which relies on the temporal separation of the fluorescence signal and detection of single fluorophores. Separation can be achieved using photoactivatable or -convertible fluorescent proteins (FPs) in photoactivated localization microscopy (PALM), photoswitchable organic dyes in direct stochastic optical reconstruction microscopy (dSTORM) or dynamically binding fluorescent probes in point accumulation for imaging in nanoscale topography (PAINT). In all these techniques, the fluorescence emission pattern of single fluorophores is spatially localized with nanometer-precision. An artificial image is finally reconstructed from the coordinates of all single fluorophores detected. This provides a spatial resolution of ~ 20 nm, which is perfectly suited to investigate cellular processes in bacteria. In this thesis, different SMLM techniques were applied to study fundamental processes in E. coli. This includes determination of protein copy numbers and distributions as well as the nanoscale organization of nucleic acids and lipids.
A novel labeling approach was applied and used for super-resolution imaging of the E. coli nucleoid. It is based on the incorporation of the modified thymidine analogue 5-ethynyl-2’- deoxyuridine (EdU) into the replicating chromosome. Azide-functionalized organic fluorophores can be covalently attached to the ethynyl group of incorporated EdU bases using a copper-catalyzed "click chemistry" reaction. Under the investigated growth condition, E. coli cells exhibited overlapping replication cycles, which is commonly referred to as multi-fork replication and enables cells to divide faster than they can replicate the entire chromosome. dSTORM imaging of such labeled nucleoids revealed chromosome features with diameters of 50 - 200 nm, representing highly condensed DNA filaments. Sorting single E. coli cells by length allowed visualizing structural changes of the nucleoid throughout the cell cycle. Replicating nucleoids segregated and expanded along the bacterial long axis, while constantly covering the entire width of the cell. Measuring cell and nucleoid length revealed a relative nucleoid expansion rate of 78 ± 6 %. At the same time, nucleoids populated 63 ± 8 % of the cell length, almost exclusively being localized to the cylindrical part of the cell. This value was hence normalized to the cylindrical fraction of the cell, yielding a value of 79 ± 10 % (nucleoid-populated fraction of the cell cylinder), which is in good agreement with the observed relative nucleoid expansion rate. These results therefore support a growth-mediated segregation model, in which the chromosome is anchored to the inner membrane and passively segregated into the prospective daughter cells upon cell growth. 3-dimensional dSTORM imaging of labeled nucleoids confirmed that compacted nucleoids helically wrap along the inner membrane. Similar results were obtained by imaging orthogonally aligned E. coli cells using a holographic optical tweezer approach.
In order to visualize particular proteins together with the nucleoid, several correlative imaging workflows were established, facilitating multi-color SMLM imaging in single E. coli cells. These workflows bypass prior limitations of SMLM, including destruction of FPs by reactive oxygen species in copper-catalyzed click reactions or incompatibility of PALM imaging with dSTORM imaging buffers. A sequential SMLM imaging routine was developed which is based on postlabeling and retrieval of previously imaged cells. Optimal imaging conditions can be maintained for each fluorophore, enabling to extract quantitative information from PALM measurements while correlating the protein distribution to the nucleoid ultrastructure within the highly resolved cell envelope. Applying this workflow to an E. coli strain carrying a chromosomal rpoC - photoactivatable mCherry (PAmCh) fusion, transcribing RNA polymerase (RNAP) was found to be localized on the surface of nucleoids, where active genes are exposed towards the cytosol. During growth in nutrient-rich medium, the majority of RNAP molecules was bound to the chromosome, thus ensuring that the RNAP pool is equally distributed to the daughter cells upon cell division. This work represented the first triple-color SMLM study performed in E. coli cells. ...