Refine
Year of publication
Document Type
- Doctoral Thesis (39)
Has Fulltext
- yes (39)
Is part of the Bibliography
- no (39)
Keywords
- Antigen carrier (1)
- Binding kinetic (1)
- Corynebakterium efficiens (1)
- Fatty Acid Synthase (1)
- Fatty Acids (1)
- Fatty acid synthases (1)
- Fettsäuresynthase (1)
- Fettsäuresynthase Typ I (1)
- Flavin homeostasis (1)
- Inthraszentin (1)
Institute
Ziel dieser Doktorarbeit war es, die Bedeutung der Kristallstrukturbestimmung aus Pulverdaten (SDPD) herauszuarbeiten und etwaige Grenzen durch neue Methodenentwicklungen zu erweitern, insbesondere bei Analyse der Paarverteilungsfunktion (PDF).
Die Effizienz der SDPD konnte anhand der erfolgreich gelösten Kristallstruktur von Carmustin (1,3 Bis-2-chlorethyl-1-nitrosoharnstoff, C5H9Cl2N3O2) aufgezeigt werden. [CS01]
Die Grenzen der SDPD wurden ausgelotet und erfolgreich erweitert. Nach weit verbreiteter kristallographischer Meinung ist die Strukturlösung mittels des simulierten Temperns (simulated annealing, SA) bei mehr als 25 zu bestimmenden Parametern problematisch oder unmöglich. Die pharmazeutischen Salze Lamivudin-Camphersulfonat (LC) und Aminogluthethimid-Camphersulfonat (AC) konnten, trotz ihrer hohen Anzahl an Freiheitsgraden von 31 für LC bzw. 37 für AC erfolgreich bestimmt werden. Die Strukturlösung von AC war herausfordernd und nicht direkt bei Anwendung der SA-Methode möglich. Nach einer intensiven Fehleranalyse stellte sich heraus, dass nicht die Grenzen der SA-Methode ausschlaggebend für das anfängliche Scheitern der Strukturlösung waren, sondern falsch extrahierte Intensitäten des vorangegangenen Pawley-Fits. Nach Behebung dieser Fehlerquelle war die Strukturlösung von AC problemlos. [CS02]
Mittels SDPD kann die absolute Konfiguration chiraler Verbindungen nicht direkt bestimmt werden. Durch Kristallisation der zu bestimmenden chiralen Verbindung mit einem chiralen Gegenion bekannter Konformation in einer simplen Säure-Base-Reaktion zu einem diastereomeren Salz und nachfolgender SDPD konnte eine neue Methode entwickelt werden, um die Konfigurationsbestimmung aus Pulverdaten zu ermöglichen. Diese Methode wurde anhand der drei pharmazeutischen Salze (R)-Flurbiprofen-(R)-Chinin (FQ), (2R5S)-Lamivudin-(R)-Camphersulfonat (LC) und (R)-Aminogluthethimid-(R)-Camphersulfonat (AC) aufgezeigt: In allen drei Fällen konnte die korrekte Konfiguration des pharmazeutischen Wirkstoffes mit den hierfür entwickelten Kriterien erfolgreich bestimmt werden. [CS03, CS04]
Durch Kombination der klassischen SDPD mit neuen methodischen Ansätzen konnten die Kristallstrukturen der schlecht kristallinen organischen Pigmente 2-Monomethylchinacridon (MMC, C21H14N2O2) und 4,11-Difluorchinacridon (DFC, C20H10N2O2F2) bestimmt werden, obwohl aufgrund ihrer geringen Kristallqualität keine sinnvolle Indizierung möglich war.
Für die Kristallstrukturbestimmung von DFC lieferte der neu entwickelte Global-Fit des Programms FIDEL mögliche Strukturmodelle mit ähnlich guter Übereinstimmung an das experimentelle Pulverdiagramm. Die Rietveld-Verfeinerung der Strukturmodelle in Kombination mit der Anpassung der Kristallstruktur an die PDF-Daten und kraftfeldbasierter Gitterenergieminimierung konnte einen geeigneten Strukturrepräsentanten von DFC liefern. [CS05, CS06]
Im Fall von MMC war eine Kombination der Methoden von Rietveld-Verfeinerung, Verfeinerung an die PDF-Daten und Gitterenergieminimierung zielführend zur Bestimmung der Orientierungs-Fehlordnung von MMC im Kristall. MMC ist hierbei die erste organische Verbindung, deren Fehlordnung durch Anpassung an die PDF bestimmt werden konnte. [CS07]
Große Erfolge konnten bei der Methodenentwicklung der PDF-Analyse erzielt werden. Die Bestimmung von Kristallstruktur organischer Verbindungen durch Anpassung an die PDF ohne vorherige Kenntnis der Gitterparameter oder Raumgruppe wurde durch die Entwicklung des PDF-Global-Fits erreicht. Lediglich die PDF-Kurve und eine Molekülstruktur werden als Input benötigt. Die Strukturlösung beruht auf einem globalen Optimierungs-Ansatz, bei welchem in ausgewählten Raumgruppen Zufallsstrukturen erzeugt werden. Die Zufallsstrukturen werden mit den experi¬mentellen Daten verglichen und entsprechend ihres Ähnlichkeitsindexes, basierend auf der Kreuz-Korrelation, sortiert. [CS08, CS09] Die vielversprechendsten Kandidaten werden in einem einge¬schränkten simulierten annealing-Ansatz an die experimentelle PDF angepasst. Eine nachfolgende Strukturverfeinerung der besten Strukturmodelle liefert die korrekte Kristallstruktur. Der Erfolg des PDF-Global-Fits wurde am Beispiel der Barbitursäure aufgezeigt: Ausgehend von 300 000 Zufallsstrukturen konnte die korrekte Kristallstruktur von Barbitursäure bestimmt werden. Barbitursäure ist hierdurch die erste organische Verbindung, deren Lokalstruktur durch Anpassung an die PDF bestimmt wurde, ohne Input oder Vorgabe von Gitterparametern oder Raumgruppe.[CS10]
Protein biosynthesis is a conserved process, essential for life. Proteins are assembled from single amino acids according to their genetic blueprint in the form of a messenger ribonucleic acid (mRNA). Peptide bond formation is catalyzed by ancient ribonucleic acid (RNA) residues within the supramolecular ribosomal complex, which is organized in two dynamic subunits (Ramakrishnan, 2014). Each subunit comprises large ribosomal RNA (rRNA) molecules and several dozens of peripheral proteins. mRNA translation has been divided into three phases, namely translation initiation, elongation and termination in biochemistry textbooks. During initiation, the ribosomal subunits assemble into a functional ribosome on an activated mRNA and acquire the first transfer RNA (tRNA), an adapter between the start codon on the mRNA and the N-terminal methionine of the protein (Hinnebusch and Lorsch, 2012). During elongation, the ribosome translocates along the mRNA exposing one codon after the other, and amino acids are delivered to the ribosome by the respective tRNAs, and attached to the nascent polypeptide chain. During termination, the polypeptide is released and the ribosome remains loaded with mRNA and tRNA at the end of the open reading frame for the translated gene (Hellen, 2018). Bacterial ribosomes are subsequently recycled by a specific ribosome recycling factor and the small ribosomal subunit is simultaneously consigned to initiation factors for a next round of translation – rendering bacterial translation as a cyclic process with an additional ribosome recycling phase. However, the process of ribosome recycling remained enigmatic in Eukarya and Archaea until the simultaneous discovery of the twin-ATPase ABCE1 as the major ribosome recycling factor. Strikingly, ABCE1 has initially been shown to participate in translation initiation (Nürenberg and Tampé, 2013). Thus, closing the translation cycle by revealing the detailed molecular mechanism of ABCE1 and its role for translation initiation are the two goals of this research.
Beyond the plenitude of well-studied translational GTPases, ABCE1 is the only essential factor energized by ATP, delivering the energy for ribosome splitting via two nucleotide-binding sites. Here, I define how allosterically coupled ATP binding and hydrolysis events in ABCE1 empower ribosome recycling. ATP occlusion in the low-turnover control site II promotes formation of the pre-splitting complex and facilitates ATP engagement in the high-turnover site I, which in turn drives the structural re- organization required for ribosome splitting. ATP hydrolysis and ensuing release of ABCE1 from the small subunit terminate the post-splitting complex. Thus, ABCE1 runs through an allosterically coupled cycle of closure and opening at both sites consistent with a processive clamp model. This study delineates the inner mechanics of ABCE1 and reveals why various ABCE1 mutants lead to defects in cell homeostasis, growth, and differentiation (Nürenberg-Goloub et al., 2018).
Additionally, a high-resolution cryo-electron microscopy (EM) structure of the archaeal post-splitting complex was obtained, revealing a central macromolecular assembly at the crossover of ribosome recycling and translation initiation. Conserved interactions between ABCE1 and the small ribosomal subunit resemble the eukaryotic complex (Heuer et al., 2017). The conformational state of ABCE1 at the post-splitting complex confirms the molecular mechanism of ribosome recycling uncovered in this study. Moving further along the reaction coordinate of cellular translation, I reconstitute the complete archaeal translation initiation pathway and show that essential archaeal initiation factors are recruited to the post-splitting complex by biochemical methods and cryo-EM structures at intermediate resolution. Thus, the archaeal translation cycle is closed, following its bacterial model and paving the way for a deeper understanding of protein biosynthesis.
Die Paarverteilungsfunktion (PDF) beschreibt die Wahrscheinlichkeit, zwei Atome eines Materials in einem Abstand r voneinander zu finden. Diese Methode bewährt sich seit längerer Zeit zur Untersuchung von Gläsern, Flüssigkeiten, amorphen, stark fehlgeordneten und nanokristallinen anorganischen Substanzen. Die Anwendung für organische Substanzen ist jedoch relativ neu, mit etwa 20 Veröffentlichungen und Patenten insgesamt.
Im Rahmen dieser Dissertation wurden zwei Methoden zur Strukturverfeinerung und Strukturlösung organischer Substanzen anhand von PDF-Daten erfolgreich entwickelt und an diversen Beispielen validiert. Als erster Schritt hierzu wurde eine Methodenverbesserung vorgenommen. Hierbei handelte es sich um eine Verbesserung der Simulation der PDF-Kurven organischer Verbindungen anhand eines gegebenen Strukturmodells. Mit Hilfe der bisherigen Methoden können die PDF-Kurven anorganischer Substanzen erfolgreich simuliert werden. Für organische Substanzen werden bei Anwendung der bisherigen Methode die Signalbreiten der intramolekularen und intermolekularen Beiträge zu der PDF-Kurve falsch wiedergegeben, dies führt zu einer schlechten Anpassung der simulierten PDF-Daten and die experimentellen PDF-Daten. Deshalb wurde ein neuer Ansatz entwickelt, in welchem für die Berechnung der intramolekularen Beiträge zum PDF-Signal ein anderer isotroper Auslenkungsparameter verwendet wurde, als bei der Berechnung der intermolekularen Beiträge zum PDF-Signal. Mit diesem Ansatz konnte eine sehr gute Simulation der PDF-Kurve für alle Testbeispiele erzielt werden. Zur Strukturverfeinerung organischer Substanzen anhand von PDF-Daten wurden zwei Ansätze entwickelt: der Rigid-Body-Ansatz zur Behandlung starrer organischer Moleküle und der Restraint-Ansatz zur Behandlung flexibler organischer Moleküle.
Neben methodischen Entwicklungen wurden in dieser Arbeit zwei weitere Untersuchungen organischer Verbindungen mittels PDF-Analyse durchgeführt.
Es wurden drei, auf unterschiedliche Weise hergestellte, amorphe Proben des Wirkstoffes Telmisartan untersucht. Des Weiteren wurde mittels PDF-Analyse eine pharmazeutische Nanosuspension untersucht.
Die chemischen und physikalischen Eigenschaften eines Festkörpers sind vom inneren Aufbau des Festkörpers abhängig. Die Methode der Wahl zur Bestimmung von Kristallstrukturen sind Beugungsexperimente. Fehlordnungen in den Kristallstrukturen werden mit Beugungsexperimenten häufig nur unzureichend ausgewertet oder ignoriert. In dieser Arbeit wurden die (möglichen) Stapelfehlordnungen der Aminosäuren DL-Norleucin und DL-Methionin, sowie von Chloro (phthalocyaninato)aluminium(III) untersucht. Dazu wurden Gitterenergieminimierungen mit Kraftfeld- und quantenchemischen Methoden an einem Satz geordneter Modellstrukturen durchgeführt.
In den Kristallstrukturen der α- und β-Phasen von DL-Norleucin ordnen sich die Moleküle in Doppelschichten an und bilden jeweils eine Schichtstruktur mit unterschiedlicher Stapelsequenz. Röntgenbeugungsexperimente an Kristallen dieser Verbindung zeigen charakteristische diffuse Streuung. Die durchgeführten Gitterenergieminimierungen reproduzieren die experimentelle Stabilitätenreihenfolge der beiden Polymorphe von DL-Norleucin. Die berechneten Gitterenergien zeigen, dass es für DL-Norleucin bevorzugte Stapelsequenzen gibt. Die Gitterenergien und Molekülstrukturen einer einzelnen Doppelschicht sind dabei von der Anordnung benachbarter Doppelschichten abhängig. Zudem wurden Strukturmodelle mit Stapelsequenzen aufgebaut, die aus kristallographischer Sicht möglich sind, jedoch experimentell nicht beobachtet wurden, und deren Gitterenergie berechnet. Diese Stapelsequenzen liefern im Vergleich zu den energetisch günstigsten Stapelsequenzen einen signifikanten Energieverlust und treten daher selten auf. Ausgehend von den Ergebnissen der Gitterenergieminimierungen mit DFT-D-Methoden wurden Stapelwahrscheinlichkeiten mit Hilfe der Boltzmann-Statistik berechnet. Es wurde ein großes geordnetes Modell mit einer Stapelsequenz gemäß der Stapelwahrscheinlichkeiten aufgebaut. Dieses Modell wurde verwendet, um Beugungsexperimente zu simulieren und mit experimentellen Daten zu vergleichen. Die theoretischen und experimentellen Beugungsdaten waren in guter Übereinstimmung.
Die Moleküle in den Kristallstrukturen der α- und β-Phasen von DL-Methionin bilden Doppelschichten. Die beiden Phasen unterscheiden sich in der Stapelung der Doppelschichten und der Molekülkonformation. Es wurden Gitterenergieminimierungen sowohl mit Kraftfeld-Methoden als auch mit DFT-DMethoden an geordneten Modellen mit unterschiedlichen Stapelsequenzendurchgeführt. Die experimentell bestimmte Stabilitätenreihenfolge der Polymorphe von DL-Methionin bei tiefen Temperaturen wurde durch die Ergebnisse der kraftfeldbasierten Rechnungen reproduziert. Die Modellstrukturen wurden während den Rechnungen moderat verzerrt. Die Bandbreite der relativen Energien aller Modelle ist relativ gering, sodass eine Stapelfehlordnung aus thermodynamischer Sicht nicht ausgeschlossen werden kann. In der Regel liefern Gitterenergieminimierungen mit DFT-D Methoden genauere Ergebnisse. Die Modellstrukturen wurden während den Rechnungen nur leicht verzerrt. Allerdings unterscheidet sich das Energieranking zwischen den Kraftfeld- und DFT-D-Methoden deutlich. Die experimentell bestimmte Stabilitätenreihenfolge der Polymorphe von DL-Methionin wurde mit DFT-D-Methoden nicht reproduziert. Die Energieunterschiede zwischen den beiden Polymorphen (ΔE = 1,60 kJ∙mol−1 (DFT-D2) bzw. ΔE = 0,83 kJ∙mol−1 (DFT-D3)) sind relativ gering und liegen im Fehlerbereich der Methode. Die Bandbreite der relativen Energien aller Strukturmodelle beträgt nur etwa 1,8 kJ∙mol−1. Auf dieser Grundlage ist eine Stapelfehlordnung in den Kristallstrukturen von DL-Methionin möglich, jedoch nicht experimentell beobachtet. Nicht nur die Kraftfeld-,sondern auch die DFT-D-Methoden scheinen für die Berechnung der Gitterenergien für das System DL-Methionin nicht genügend genau zu sein. Die erhaltenen relativen Energien sollten daher mit Vorsicht betrachtet werden.
Chloro(phthalocyaninato)aluminium(III) (AlPcCl) bildet eine Schichtstruktur, in der sich die Moleküle zu Doppelschichten zusammenlagern. Die 1984 durchgeführte Kristallstrukturbestimmung [98] lieferte auf Grund der schlechten Datenqualität nur eine ungenaue Kristallstruktur. Die asymmetrische Einheit enthält zwei Moleküle, von denen das eine Molekül geordnet, das andere fehlgeordnet ist. Die Kristallstruktur von AlPcCl ist fehlgeordnet, weil eine einzelne Doppelschicht von Molekülen eine tetragonale P4/n-Symmetrie aufweist, die vier symmetrieäquivalente Möglichkeiten bietet, eine zweite Doppelschicht auf einer ersten Doppelschicht zu platzieren. Mit Hilfe der OD-Theorie wurde ein Satz geordneter Modelle mit verschiedenen Stapelsequenzen aufgestellt und die Gitterenergie zunächst mit Kraftfeld-Methoden und anschließend mit DFT-DMethoden berechnet. Auf Grund unzureichender Parametrisierung, musste das Kraftfeld an das System AlPcCl angepasst werden. Die Modellstrukturen werden während den Kraftfeld-Rechnungen nur leicht verzerrt. Die berechneten Gitterenergien hängen allerdings stark von der verwendeten Parametrisierung und den Atomladungen ab und sollten daher mit Vorsicht betrachtet werden. Genauere Ergebnisse erzielten Gitterenergieminimierungen mit DFT-D-Methoden. Die verschiedenen Stapelsequenzen haben eine ähnliche Energie, was die Stapelfehlordnung in der Kristallstruktur von AlPcCl erklärt. Die Überlagerung der vier energetisch günstigsten geordneten Stapelsequenzen führt zu einer gemittelten Struktur, die sehr gut die fehlgeordnete experimentelle Kristallstruktur von AlPcCl erklärt.
In this thesis, we characterized megasynthases such as fatty acid synthases (FASs) and polyketide synthases. The obtained insights into structure and function were used to engineer such systems to produce new-to-nature compounds.
The in vitro characterization of megasynthases requires reproducible access to these enzymes in high quality. Therefore, we established purification strategies for the yeast FAS and the methylsalicylic acid synthase (MSAS) from Saccharopolyspora erythraea (SerMSAS) and applied the latter one on MSAS from Penicillium patulum (PenPaMSAS) and on 6-deoxyerythronolide B synthase (DEBS) module 6. With the purified samples, we were able to obtain initial structural data for SerMSAS and solve the complete structure of the yeast FAS (PDB: 6TA1). On the example of the yeast FAS, we could show that the sample can suffer from adsorption to the water-air interface during the grid preparation for electron microscopy and presented how the use of graphene-based grids can overcome this problem. The combined structural and functional analysis of the yeast FAS showed that the structural domains trimerization module and dimerization module 2 are not essential for the assembly of the whole system. Therefore, they can potentially be used for domain exchange approaches. The in-depth functional analysis of SerMSAS revealed that not SerMSAS itself releases the product, but a 3-oxoacyl-(acyl-carrier protein) synthase like enzyme within the gene cluster transfers 6-methyl salicylic acid from SerMSAS to another carrier protein for subsequent modifications. In contrast, we showed that PenPaMSAS can release its product by hydrolysis and that non-native substrates can be incorporated although at significantly slower turnover rates compared to the native starter substrate. Our further investigation demonstrated that the substrate specificity of the acyltransferase (AT) is a critical factor for the incorporation of non-native substrates.
With the insight from the functional and structural characterization, we engineered megasynthases for the biosynthesis of natural product derivatives. We targeted the AT of PenPaMSAS for active site mutagenesis and discovered a mutant which can transfer non-native substrates significantly faster (~200-300%). Additionally, the malonyl/acetyl transferase (MAT) of the mammalian FAS was used as a promising target for protein engineering because of its previously reported properties including polyspecificity, fast transfer kinetics, robustness, and plasticity. We showed that the MAT can transfer fluorinated substrates and accept the acyl carrier protein of DEBS module 6. By exchanging the substrate specific AT of DEBS with the polyspecific MAT of the mammalian FAS, we demonstrated an efficient DEBS/FAS hybrid and an optimal truncation site for the applied ATs. In contrast to the wild type system, the DEBS/FAS enzyme was able to synthesize demethylated and fluorinated derivatives. The production and purification of a fluoro-methyl-disubstituted polyketide was of particular interest, as it has a high potential for the generation of new drugs and shows the potential of protein engineering. Furthermore, the incorporation of the disubstituted substrate had important implication in the mechanistic details of the ketosynthase-mediated C-C bond formation.
Polyketide synthases (PKSs) are large megaenzymes that occur in bacteria, fungi, and plants and produce polyketides, a class of secondary metabolites. Many polyketide natural products exhibit high biological activities e.g. as antibiotics or anti-fungal compounds. The modular architecture of assembly line PKSs makes them exciting targets for engineering approaches via the exchange of whole modules or single domains. Although many engineering attempts have been pursued over the last three decades, the resulting chimeric PKSs often exhibit decreased turnover rates or diminished product yields.
In this thesis, new approaches to engineer chimeric PKSs were explored, each targeting a different aspect of the chimeric system: First the relative contribution of protein-protein and protein-substrate recognition on the turnover of chimeric PKS was assessed, revealing the importance of protein-protein interactions between the acyl carrier protein (ACP) and the ketosynthase (KS) domain in the chain translocation step. Directed evolution experiments followed to optimize the protein-protein interaction across a chimeric interface. Additionally, different junction sites for the generation of chimeric PKSs were compared, showing the ability for recombination without interfering with the chain translocation reaction, and highlighting the use of SYNZIP domains to bridge PKS modules. To optimize chimeric PKSs even further, multipoint mutagenesis of KS domains was established, with positive effects on the activity of chimeric systems.
To support engineering attempts, several structure elucidation techniques were combined with in silico modeling to characterize the architecture of a PKS module and the domain-domain interactions within it. Preliminary results show a strong conformational flexibility of the PKS module and the great potential of these techniques to define the multitude of transient interactions in PKS modules.
Bacteria are highly organized organisms which are able to adapt to and propagate under a multitude of environmental conditions. Propagation hereby requires reliable chromosome replication and segregation which has to occur cooperatively with other cellular processes such as transcription, translation or signaling. Several mechanisms were proposed for segregation of the Escherichia coli (E. coli) chromosome, for example a mitotic-like active segregation model or entropy-based passive chromosome segregation. Another segregation model suggests coupled transcription, translation and insertion of membrane proteins (termed "transertion"), which links the replicating chromosome (nucleoid) to the growing cell cylinder.
Fluorescence microscopy was widely used to provide evidence for a distinct segregation model. However, the dynamic nature of bacterial chromosomes, the small bacterial size and the optical resolution limit of ~ 200-300 nm impair unveiling the underlying mechanisms. With the emergence of super-resolution fluorescence microscopy techniques and advanced labeling methods, a new toolbox became available enabling scientists to visualize biomolecules and cellular processes in unprecedented detail. Single-molecule localization microscopy (SMLM) represents a set of super-resolution microscopy techniques which relies on the temporal separation of the fluorescence signal and detection of single fluorophores. Separation can be achieved using photoactivatable or -convertible fluorescent proteins (FPs) in photoactivated localization microscopy (PALM), photoswitchable organic dyes in direct stochastic optical reconstruction microscopy (dSTORM) or dynamically binding fluorescent probes in point accumulation for imaging in nanoscale topography (PAINT). In all these techniques, the fluorescence emission pattern of single fluorophores is spatially localized with nanometer-precision. An artificial image is finally reconstructed from the coordinates of all single fluorophores detected. This provides a spatial resolution of ~ 20 nm, which is perfectly suited to investigate cellular processes in bacteria. In this thesis, different SMLM techniques were applied to study fundamental processes in E. coli. This includes determination of protein copy numbers and distributions as well as the nanoscale organization of nucleic acids and lipids.
A novel labeling approach was applied and used for super-resolution imaging of the E. coli nucleoid. It is based on the incorporation of the modified thymidine analogue 5-ethynyl-2’- deoxyuridine (EdU) into the replicating chromosome. Azide-functionalized organic fluorophores can be covalently attached to the ethynyl group of incorporated EdU bases using a copper-catalyzed "click chemistry" reaction. Under the investigated growth condition, E. coli cells exhibited overlapping replication cycles, which is commonly referred to as multi-fork replication and enables cells to divide faster than they can replicate the entire chromosome. dSTORM imaging of such labeled nucleoids revealed chromosome features with diameters of 50 - 200 nm, representing highly condensed DNA filaments. Sorting single E. coli cells by length allowed visualizing structural changes of the nucleoid throughout the cell cycle. Replicating nucleoids segregated and expanded along the bacterial long axis, while constantly covering the entire width of the cell. Measuring cell and nucleoid length revealed a relative nucleoid expansion rate of 78 ± 6 %. At the same time, nucleoids populated 63 ± 8 % of the cell length, almost exclusively being localized to the cylindrical part of the cell. This value was hence normalized to the cylindrical fraction of the cell, yielding a value of 79 ± 10 % (nucleoid-populated fraction of the cell cylinder), which is in good agreement with the observed relative nucleoid expansion rate. These results therefore support a growth-mediated segregation model, in which the chromosome is anchored to the inner membrane and passively segregated into the prospective daughter cells upon cell growth. 3-dimensional dSTORM imaging of labeled nucleoids confirmed that compacted nucleoids helically wrap along the inner membrane. Similar results were obtained by imaging orthogonally aligned E. coli cells using a holographic optical tweezer approach.
In order to visualize particular proteins together with the nucleoid, several correlative imaging workflows were established, facilitating multi-color SMLM imaging in single E. coli cells. These workflows bypass prior limitations of SMLM, including destruction of FPs by reactive oxygen species in copper-catalyzed click reactions or incompatibility of PALM imaging with dSTORM imaging buffers. A sequential SMLM imaging routine was developed which is based on postlabeling and retrieval of previously imaged cells. Optimal imaging conditions can be maintained for each fluorophore, enabling to extract quantitative information from PALM measurements while correlating the protein distribution to the nucleoid ultrastructure within the highly resolved cell envelope. Applying this workflow to an E. coli strain carrying a chromosomal rpoC - photoactivatable mCherry (PAmCh) fusion, transcribing RNA polymerase (RNAP) was found to be localized on the surface of nucleoids, where active genes are exposed towards the cytosol. During growth in nutrient-rich medium, the majority of RNAP molecules was bound to the chromosome, thus ensuring that the RNAP pool is equally distributed to the daughter cells upon cell division. This work represented the first triple-color SMLM study performed in E. coli cells. ...
Non-ribosomal peptide synthetase docking domains : structure, function and engineering strategies
(2021)
Non-ribosomal peptide synthetases (NRPSs) are known for their capability to produce a wide range of natural compounds and some of them possess interesting bioactivities relevant for clinical application like antibiotics, anticancer, and immunosuppressive drugs. The diverse bioactivity of non-ribosomal peptides (NRPs) originates from their structural diversity, which results not only from the incorporation of non-proteinogenic amino acids into the growing peptide chain, but also the formation of heterocycles or further peptide modifications like methylation, hydroxylation and acetylation.
The biosynthesis of NRPs is achieved via the orchestrated interplay of distinct catalytic domains, which are grouped to modules that are located on one or more polypeptide chains. Each cycle starts with the selection and activation of a specific amino acid by the adenylation (A) domain, which catalyzes the aminoacyl adenylate formation under ATP consumption. This activated amino acid is then bound via a thioester bond to the 4’-phosphopantetheine cofactor (PPant-arm) of the following thiolation (T) domain. Before substrate loading, the PPant-arm is post-translationally added to the T domain by a phosphopantetheinyl transferase (PPTase), which converts the inactive apo-T domain in its active holo-form. In the last step of the catalytic cycle, two T domain bound peptide building blocks are connected by the condensation (C) domain, resulting in peptide bond formation and transfer of the nascent peptide chain to the following module. Each catalytic cycle is performed by a C-A-T elongation module until the termination module with a C-terminal thioesterase (TE) domain is reached. Here, the peptide product is released by hydrolysis or intramolecular cyclisation.
In comparison to single-protein NRPSs, where all modules are encoded on a single polypeptide chain, multi-protein NRPS systems must also maintain a specific module order during the peptide biosynthesis. Therefore, small C-terminal and N-terminal communication-mediating (COM) domains/docking domains (DD) were identified in the C- and N-terminal regions of multi-protein NRPSs. It was shown that these domains mediate specific and selective non-covalent protein-protein interaction, even though DD interactions are generally characterized by low affinities.
The first publication of this work focuses on the Peptide-Antimicrobial-Xenorhabdus peptide-producing NRPS called PaxS, which consists of the three proteins PaxA, PaxB and PaxC. Here, in particular the trans DD interface between the C-terminal attached DD of PaxB and N-terminal attached DD of PaxC was structurally investigated and thermodynamically characterized by isothermal titration calorimetry (ITC), yielding a dissociation constant (KD) of ~25 µM, which is a DD typical affinity known from further characterized DD pairs. The artificial linking of the PaxB/C C/NDD pair via a glycine-serine (GS) linker facilitated the structure determination of the DD complex by solution nuclear magnetic resonance (NMR) spectroscopy. In comparison to known docking domain structures, this DD complex assembles in a completely new fold which is characterized by a central α-helix of PaxC NDD wrapped in two V-shaped α-helices of PaxB CDD.
The first manuscript of this work focuses on the application of synthetic zippers (SZ) to mimic natural docking domains, enabling the easy assembly of NRPS building blocks encoded on different plasmids in a functional way. Here, the high-affinity interaction of SZs unambiguously defines the order of the synthetases derived from single-protein NRPSs in the engineered NRPS system and allows the recombination in a plug-and-play manner. Notably, the SZ engineering strategy even facilitates the functional assembly of NRPSs derived from Gram-positive and Gram-negative bacteria. Furthermore, the functional incorporation of SZs into NRPS modules is not limited to a specific linker region, so we could introduce them within all native NRPS linker regions (A-T, T-C, C-A).
The second publication and the second manuscript of this thesis again focus on the multi-protein PaxS, in particular on the trans interface between the proteins PaxA and PaxB on a molecular level by solution NMR. Therefore, the PaxA CDD adjacent T domain was included into the structural investigation besides the native interaction partner PaxB NDD. Before a three-dimensional structure could be obtained from NMR data, the NH groups located in the peptide bonds had to be assigned to the respective amino acids of the proteins (backbone assignment). Based on these backbone assignments, the secondary structure of PaxA T1-CDD and PaxB NDD in the absence and presence of the respective interaction partner were predicted.
The structural and functional characterization of the PaxA T1-CDD:PaxB NDD complex is summarized in manuscript two. The thermodynamic analysis of this complex by ITC determined a KD value of ~250 nM, whereas the discrete DDs did not interact at all. The high-affinity interaction allowed to determine the solution NMR structure of the PaxA T1-CDD:PaxB NDD complex without the covalent linkage of the interaction partners and an extended docking domain interface could be determined. This interface comprises on the one hand α-helix 4 of the PaxA T1 domain together with the α-helical CDD, and on the other hand the PaxB NDD, which is composed of two α-helices separated by a sharp bend.
...
Die Biosynthese der Fettsäuren (FS) ist in Eukaryoten und Bakterien ein hochkonserviert zentraler Stoffwechselweg, der in zwei strukturell verschiedenen Systemen ausgeführt wird. Die meisten Bakterien, Parasiten, Pflanzen und Mitochondrien nutzen ein Fettsäuresesynthase Typ-II (FAS-II) System. Bei FAS II Systemen sind alle katalytischen Domänen separate lösliche Proteine. In Eukaryoten wie auch den Bakterien Corynebakteria, Mycobakteria, Nocardia (Klasse der CMN Bakterien) liegen die katalytischen Domänen fusioniert auf einer Polypeptidkette vor, die zu einem Multienzymkomplex der Fettsäuresynthase Typ I (FAS-I) assemblieren. Die Architektur der FAS-I zeigt große Unterschiede; die X förmige Säuger-FAS-I (Maier et al., 2006), sowie die fassartigen Enzyme der Pilz FAS-I (Jenni et al., 2007; Leibundgut et al., 2007; Lomakin et al., 2007; Johansson et al., 2008) und der bakteriellen FAS-I (Boehringer et al., 2013; Ciccarelli et al., 2013). Zwischen Pilz- und bakterieller FAS-I gibt es trotz des ähnlichen Aufbaus bedeutende Unterschiede. Mycobakterium tuberculosis, der Auslöser von Tuberkulose (TB), an der jährlich über eine Million Menschen weltweit sterben (WHO, 2014), synthetisiert durch eine Symbiose von FAS-I, FAS-II und der Polyketidsynthase-13 Mykolsäuren. Durch die Mykolsäuren ist M. tuberculosis resistent gegen äußere Einflüsse. FAS-I ist in die Synthese der Vorstufen der Mykolsäuren involviert. Sie stellt im Kampf gegen TB ein potentielles Inhibierungstarget dar.
Strukturell war die bakterielle FAS-I beim Beginn der vorliegenden Arbeit, nur durch negative-stain-Elektronenmikroskopie (EM) Aufnahmen aus dem Jahr 1982 charakterisiert (Morishima et al., 1982). In dieser Arbeit konnte die bakteriellen FAS I aus M. tuberculosis (MtFAS), sowie Corynebacterium ammoniagenes (CaFAS) und Corynebacterium efficiens (CeFAS) strukturell untersucht werden. Dies geschah mit den Methoden negative-stain-EM, Einzelmolekül-Cryo-EM (Cryo-EM), Cryo EM Tomographie (CET) und Röntgenkristallographie.
Anhand von CeFAS-Kristallen konnte erstmals durch Röntgenkristallographie die Struktur einer bakteriellen FAS-I bestimmt werden. Zudem wurde die hohe konformationelle Flexibilität der bakteriellen FAS-I mit mehreren Methoden gezeigt. Für die CaFAS konnte mit Cryo-EM initiale Prozesse der Proteinkristallbildung abgebildet werden.
Xenorhabdus and Photorhabdus bacteria are gaining more and more attention as a subject of research because of their unique yet similar life cycle with nematodes and insects. This work focused on the secondary metabolites that are produced by Xenorhabdus and Photorhabdus. With the help of modern HPLC-MS methodologies and increasingly available bacterial genome sequences, the structures of unknown secondary metabolites could be elucidated and thus their biosynthesis pathways could be proposed, too.
The first paper reported 17 depsipeptides termed xentrivalpeptides produced by the bacterium Xenorhabdus sp. 85816. Xentrivalpeptide A could be isolated from the bacterial culture as the main component. The structure of xentrivalpeptide A was elucidated by NMR and the Marfey´s method. The remaining xentrivalpeptides were exclusively identified by feeding experiments and MS fragmentation patterns.
The second paper described the discovery and isolation of xenoamicin A from Xenorhabdus mauleonii DSM17908. Additionally, other xenoamicin derivatives from Xenorhabdus doucetiae DSM17909 were analyzed by means of feeding experiments and MS fragmentation patterns. The xenoamicin biosynthesis gene cluster was identified in Xenorhabdus doucetiae DSM17909.
The manuscript for publication focused on the biosynthesis of anthraquinones in Photorhabdus luminescens. The Type II polyketide synthase for the biosynthesis of anthraquinone derivatives was discovered in P. luminescens in a previous publication by the Bode group,1 in which a partial reaction mechanism for the biosynthesis has been proposed. The manuscript reported in this thesis however elucidated the biosynthetic mechanisms in a greater detail as compared to the previous publication. Particularly, the biosynthetic mechanism was deciphered through heterologous expression of anthraquinone biosynthesis (ant) genes in E. coli. Additionally, deactivation of the genes antG encoding a putative CoA ligase and antI encoding a putative hydrolase, was performed in P. luminescens. Selected ant genes were over-expressed in E. coli as well as the corresponding proteins purified for in vitro assays. Model compounds were chemically synthesized as possible substrates of AntI and were used for in vitro assays. Here, it was revealed that the CoA ligase AntG played an essential role in the activation of the ACP AntF. Furthermore, a chain shortening mechanism by the hydrolase AntI was identified and was further confirmed by in vitro assays using model compounds. Additionally, this chain shortening mechanism was supported by homology based structural modeling of AntI.