Refine
Year of publication
Document Type
- Doctoral Thesis (31)
Has Fulltext
- yes (31)
Is part of the Bibliography
- no (31)
Keywords
- Chemische Synthese (2)
- Anorganische Synthese (1)
- Bororganische Verbindungen (1)
- Chalcogen-Liganden (1)
- Ethenoxidation (1)
- Ferrocenderivate (1)
- Heterogene Katalyse (1)
- Makromolekül (1)
- Metallorganische Polymere (1)
- Mikroreaktor (1)
Institute
- Biochemie und Chemie (25)
- Biochemie, Chemie und Pharmazie (4)
- Biowissenschaften (1)
- Pharmazie (1)
Entwicklung redoxaktiver para-Hydrochinonliganden und deren Anwendung in der Koordinationschemie
(2006)
Niedrigdimensionale Spinsysteme sind hinsichtlich ihrer magnetischen und elektronischen Eigenschaften von großem Interesse. Einen Zugang zu derartigen Systemen bieten Koordinationspolymere aus paramagnetischen CuII-Ionen (S = ½) und verbrückenden para-Hydrochinon-Liganden. CuII-Ionen eignen sich als Spinträger unter anderem deshalb, weil sie stabile quadratisch-planare Komplexe auszubilden vermögen, wodurch die Entstehung niedrigdimensionaler Strukturen begünstigt wird. Die Attraktivität para-Hydrochinon-basierter Brückenliganden beruht auf deren Redoxaktivität und der Tatsache, dass sie wegen ihrer starren π-konjugierten Struktur in der Lage sind antiferromagnetische Wechselwirkungen zwischen zwei paramagnetischen Metallzentren zu vermitteln. Darüber hinaus sind para-Hydrochinonderivate meist auch in der radikalischen Semichinonform stabil. Hieraus ergibt sich die Möglichkeit in para-Hydrochinon-verbrückte Koordinationspolymere durch elektrochemische Dotierung gezielt zusätzliche ungepaarte Spins zu injizieren. ...
Chalcogen-based species are common ligands in transition-metal chemistry and display a variety of coordination modes. Like alkyl- and arylchalcogenolates, silylchalcogenolates are able to stabilize transition-metal complexes. Metal chalcogenolates LnM-ESiR3 with small organic residues R can serve as precursors for larger metal–chalcogenide clusters, which can be accessed by cleaving the E-Si bond. Furthermore, large silyl residues at the chalcogen atom serve to kinetically stabilize reactive systems. To explore the diverse chemistry of this class of compounds, a number of different silyl chalcogenolates were synthesized, including the sodium siloxide Ph2MeSiONa and the chalcogen derivatives of the extremely sterically hindered silyl residues tBu2PhSi- und tBu3Si-. The anionic silyl species tBu2PhSiNa and tBu3SiNa nucleophilically degrade elemental chalcogens (S, Se, and Te), thus producing the silyl chalcogenolates tBu2PhSiENa and tBu3SiENa (E = S, Se, Te). The chemical and structural properties of these compounds were studied. Protonolysis produces the corresponding chalcogenols tBu2RSiEH, while oxidation leads to the dichalcogenides tBu2RSiE-ESiRtBu2 (R = tBu, Ph; E = S, Se, Te). Oxidative addition of the dichalcogenides to metal centers in low oxidation states offers one route to chalcogenolate complexes. To investigate the realm of this approach, three oligochalcogen compounds R3SiE-E′n-ESiR3 were synthesized. The tetrasulfane tBu3SiS-S2-SSitBu3 and the chalcogen(II)dithiolates (tBu3SiS)2Se and (tBu3SiS)2Te were produced, and their stability was investigated. The direct comparison of isoelectronic species allows for a deeper understanding of their similarities and differences. The silanides R3Si– can be considered as anionic phosphane analogues in which a phosphorus atom has been formally replaced with a Si– unit. Phosphanylborhydrides R2BH3P– also belong to this isoelectronic series. The same analogy holds true for the chalcogen derivatives related to the phosphane chalcogenides R3P=E. With this in mind, complexes of the CpFe(CO)2 fragment with the different isoelectronic ligands were synthesized and compared. The silyl-based ligands were found to be the strongest donors of the two isoelectronic series. The differences in donor strength were roughly twice as large for the nonchalcogen species as for the chalcogen-based ligands. To further investigate the chemistry of transition-metal silyl chalcogenolate complexes, the coordination behavior of the chalcogenolates tBu2RSiE– (R = tBu, Ph; E = S, Se, Te) was studied. Salt metathesis of silyl thiolates with appropriate metal halides leads to the multinuclear complexes [Cu(SSitBu2Ph)]4 and [ZnCl(SSitBu3)(THF)]2. Metathesis products were identified in the reactions of BrMn(CO)5 with one or two equivalents of tBu3SiSNa(THF)2. Diproporationation of these compounds leads to dimeric Mn(I)Mn(II) complexes. The crystal structure of the dinuclear disproportionation product [(CO)3Mn(mu-SSitBu3)3Mn(SSitBu3)]– displays a terminal tBu3SiS– ligand, which coordinates with a Mn-S-Si angle of 180°. This geometry indicates that the thiolate can be considered as a six-electron donor (2 sigma e–, 4 pie–), analogous to the cyclopentadienyl ligand. Photoinduced oxidative addition of the dichalcogenides to Fe(CO)5 leads to the dimeric complexes [(CO)3Fe(ESitBu3)]2 (E = S, Se, Te). The tellurolate complex forms quantitatively within 8 h. The thiolate complex, on the other hand, is formed slowly over a period of six months. IR-spectroscopic investigation of the CO vibrations of the three homologous complexes indicates that the tellurolate is the strongest donor of the series.
Die vorliegende Arbeit beschäftigte sich mit der Entwicklung, Synthese und
Charakterisierung neuartiger redoxaktiver Liganden und deren Metallkomplexen. Basierend
auf dem para- und ortho-Hydrochinon / Benzochinon-Redoxsystem wurden 13 neue
Bis(pyrazol-1-yl)methan-Liganden (28 – 36 und 67 – 70; Schema 47) synthetisiert und
vollständig charakterisiert. Ein Schwerpunkt lag auf der Einführung von Substituenten am
Bis(pyrazol-1-yl)methan-Donor, um deren Einfluss auf das N,N′-Koordinationsverhalten
gegenüber Metallionen zu untersuchen. In Analogie zu den klassichen Skorpionaten sind
Substituenten in Position 3 der Pyrazolringe in der Lage, koordinativ ungesättigte
Metallzentren kinetisch zu stabilisieren, was für potentielle Anwendungen in der Katalyse
essentiell ist. Bei den ortho-chinoiden Liganden (67 – 70; Schema 47) erfüllt die redoxaktive
Gruppe eine zweite Funktion, nämlich als Chelatdonor gegenüber Metallzentren, was die
Synthese und Untersuchung (hetero-)dinuklearer Komplexe erlaubt.
Schema 47: In dieser Arbeit synthetisierte und charakterisierte redoxaktive Bis(pyrazol-1-yl)methan-
Liganden.
Die kristallographische Charakterisierung von 10 dieser Liganden (28 – 33, 67 – 70) zeigte
größtenteils sehr ähnliche strukturelle Parameter. Ein steigender sterischer Anspruch der
Substituenten am Bis(pyrazol-1-yl)methan führte zu einer leichten Streckung der
Chinon–Bis(pyrazol-1-yl)methan-Bindung und zu kurzen Kontakten zwischen Substituenten
am zentralen Methin-Kohlenstoffatom und den ipso- (HQ-C1) bzw. ortho-Kohlenstoffatomen
(HQ-C2) am sechsgliedrigen Ring. Diese kurzen Kontakte spielten in der oxidativen
Demethylierung von 32 eine Rolle. Während alle anderen para-chinoiden Liganden mit
Cerammoniumnitrat (CAN) zu den erwarteten para-Benzochinon-Derivaten reagierten
(Schema 48), wurde im Zuge der Oxidation von 32 ein zusätzliches Sauerstoffatom am
sechsgliedrigen Ring eingeführt (47; Schema 48). Im Gegenzug wurde die sterisch am
stärksten abgeschirmte Methoxygruppe nicht oxidativ demethyliert. Letztendlich konnte
gezeigt werden, dass (i) das neu eingeführte Sauerstoffatom von atmosphärischem Sauerstoff
stammt und (ii) alle fünf Methylgruppen und beide Methoxygruppen in 32 für die Oxidation
essentiell sind.
Zusammenfassung
72
Schema 48: Oxidation der para-chinoiden Bis(pyrazol-1-yl)methan-Liganden mit CAN.
Die Cyclovoltammogramme der ortho-chinoiden Bis(pyrazol-1-yl)methan-Liganden
(untersucht am Beispiel von 67, 68 und 70) zeigten irreversible Redoxwellen, da im Zuge der
Oxidation OH-Protonen abgespalten wurden; die Redoxpotentiale liegen in einem mit
chemischen Oxidationsmitteln gut zugänglichen Bereich. 70 wurde von CAN erfolgreich
oxidiert, das Produkt 71 zersetzte sich unter den Reaktionsbedingungen allerdings sehr
schnell und konnte nicht isoliert, sondern lediglich als Additionsprodukt von 4-tert-
Butylpyridin abgefangen werden. Unter optimierten Reaktionsbedingungen und mit DDQ als
Oxidationsmittel ließen sich 70 und 68 in ihre oxidierte Form überführen und in Reinform
gewinnen. Die für ortho-Benzochinone typische Neigung zur Zersetzung wurde auch bei 71
und 73 beobachtet, wobei letzteres sich wesentlich schneller zersetzte (innerhalb von
Stunden) als 71 (innerhalb eines Tages).
Abb. 36: N,N′-Cobalt- und Palladium-Komplexe 59, 60, 74 und 75.
Die Koordinationschemie repräsentativer Vertreter der 13 redoxaktiven Bis(pyrazol-1-
yl)methan-Liganden wurde untersucht. Bereits der sterisch nur mäßig anspruchsvolle parachinoide
Ligand 29 ist in der Lage, koordinativ ungesättigte CoII-Ionen kinetisch gegenüber
der Bildung von 1:2 Komplexen zu stabilisieren. Im Festkörper liegen ausschließlich
Verbindungen mit einer 1:1 Zusammensetzung von Ligand zu CoII vor (59 und 60; Abb. 36).
In Lösung scheinen hingegen Gleichgewichte zu existieren, in denen auch die koordinativ
abgesättigten oktaedrischen 2:1 Komplexe auftreten. Die ortho-chinoiden Liganden 67 und 68
bildeten selektiv entsprechende N,N′-koordinierte PdCl2-Komplexe, ohne dass das ortho-
Hydrochinonat (Catecholat) als konkurrierender O,O′-Donor wirkte (74 und 75).
Zusammenfassung
73
Es zeigte sich jedoch auch, dass sterisch sehr anspruchsvolle Substituenten am
Bis(pyrazol-1-yl)methan-Fragment in Reaktionen mit Übergangsmetallen zu einer Zersetzung
des Ligandengerüsts führen können. So reagierte der para-chinoide tert-Butyl-substituierte
Ligand 31 mit [Co(NO3)2] zu [(HpztBu,H)2Co(NO3)2] (63). Eine analoge Zersetzung zu trans-
[(HpzR,H)2PdCl2] (76: R = Ph und 77: R = tBu) wurde nach der Reaktion der ortho-chinoiden
Liganden 69 bzw. 70 mit [PdCl2]-Quellen beobachtet.
Schema 49: Synthese von O,O′-Koordinationskomplexen der ortho-chinoiden Bis(pyrazol-1-
yl)methan-Liganden 68, 69 und 70.
Die ortho-chinoiden Bis(pyrazol-1-yl)methan-Liganden (67 – 70) besitzen mit ihrem
Catecholat-O,O′-Donor eine zweite Koordinationsstelle, was diese Liganden für die Synthese
von dinuklearen Komplexen interessant macht. Da gezeigt werden konnte, dass [PdCl2]
selektiv an den Bis(pyrazol-1-yl)methan-Donor koordiniert (vgl. 59, 60, 74 und 75; Abb. 36),
galt es als nächstes zu evaluieren, ob eine ähnlich selektive Bindung anderer Metallionen an
den O,O′-Donor möglich ist.
Abb. 37: Molekulare Strukturen ausgewählter O,O′-Koordinationskomplexe ortho-chinoider
Bis(pyrazol-1-yl)methan-Komplexe 82 (links), 83 (Mitte) und 85 (rechts).
In der Tat konnten in sehr guten Ausbeuten O,O′-gebundene [(p-cym)Ru]-, [(Phpy)2Ir]-
und [(Cp*)Ir]-Komplexe ausgewählter redoxaktiver ortho-chinoider Liganden dargestellt
werden. Vorteilhaft war die Verwendung der kristallinen, nicht-flüchtigen Base TlOtBu zum
Abfangen der im Zuge der Komplexierung freiwerdenden Protonen (Schema 49, Abb. 37).
Die Eliminierung von TlCl sorgt für eine irreversible Reaktion zu den entsprechenden
Zusammenfassung
74
Komplexen. Besonders interessant ist die Koordinationschemie des Liganden 68 im chiralen,
anionischen IrIII-Komplex 83 (Abb. 37 Mitte), der in der Synthese als Thallium-Salz anfiel
und im Festkörper TlI-verbrückte Dimere bildete.
Eine elektrochemische Charakterisierung wurde mit 85 durchgeführt. Wie erwartet, zeigte
der komplexierte Bis(dimethylpyrazol-1-yl)methan-Ligand im Gegensatz zu freiem 68 eine
reversible Oxidationswelle. Die Potentialdifferenz zwischen Liganden-Oxidation und Iridium-
Reduktion beträgt fast 2 V, was in diesem Zusammenhang bedeutet, dass sich 68 als
unschuldiger Ligand verhält und man Iridium zweifelsfrei die Oxidationsstufe +III zuweisen
kann. Mit Komplexen von 68 und leichter reduzierbaren Übergangsmetallen sollte es
hingegen möglich sein, in den Bereich des nicht-unschuldigen Verhaltens vorzudringen und
z.B. Valenz-Tautomerie zu beobachten.
Mit effizienten Synthesewegen zu N,N′-Komplexen einerseits (74 und 75; Abb. 36) und
O,O′-Komplexen andererseits (u.a. 83 und 85; Abb. 37) wurde als nächstes ein heterodinuklearer
Komplex synthetisiert (87; Schema 50). 68 erwies sich als am besten geeigneter
Ligand, da er, wie bereits erwähnt, eine gute Löslichkeit bei moderatem sterischen Anspruch
besitzt und der N,N′-Donor auch in Gegenwart von Lewis-sauren Metallionen beständig ist.
Die Wannenform des Bis(pyrazol-1-yl)methan-PdII-Chelatrings in 87 bringt das Palladium-
Ion in räumliche Nähe zum ortho-Hydrochinonat π-System. In früheren Studien dieser
Arbeitsgruppe konnte gezeigt werden, dass ein solches Arrangement Elektronenübertragungen
zwischen dem Chinon und dem koordinierten Palladium-Zentrum erlaubt.
Durch die direkte konjugative Wechselwirkung des zweiten Metallzentrums (IrIII) mit der
redoxaktiven Gruppe über die Sauerstoffatome in 87 sollte eine effektive elektronische
Ligand ↔ Metall- und Metall ↔ Metall-Kommunikation möglich sein. Die elektrochemische
Charakterisierung zeigte allerdings, dass im vorliegenden Fall die Potentiale der drei
Komponenten Chinon / PdII / IrIII mit jeweils ca. einem Volt zu weit auseinander liegen.
Schema 50: Synthese eines hetero-dinuklearen IrIII/PdII-Komplexes.
Im letzten Teilgebiet dieser Arbeit wurde die Eignung der ortho-chinoiden Liganden 67
und 70 für den Aufbau höhermolekularer Koordinationsverbindungen und oligonuklearer
Aggregate untersucht.
Zusammenfassung
75
Schema 51: Synthese der oktaedrischen Komplexliganden 89 – 96.
Dafür wurden Komplexliganden synthetisiert, die aus einem Zentralmetall bestehen, das
oktaedrisch von je drei O,O′-koordinierenden Liganden 67 bzw. 70 umgeben ist (Schema 51).
Mit den freien Bis(pyrazol-1-yl)methan-Donorgruppen vermag jeder dieser Komplexliganden
drei weitere Metallzentren zu koordinieren. Derartige Verbindungen könnten aufgrund ihrer
dreidimensionalen Struktur z.B. Anwendung im Aufbau von redoxaktiven metallorganischen
Netzwerken oder elektrisch leitfähigen Koordinationspolymeren finden. Als Zentralmetalle
dienten FeIII- und AlIII-Ionen; erstere, weil sie selbst redoxaktiv sind, und letztere, weil sie
eine im Vergleich zu FeIII ähnliche Koordinationschemie besitzen, aber wegen ihres
Diamagnetismus‘ eine NMR-spektroskopische Charakterisierung ermöglichen. Je nach
verwendeter Base wurden die dreifach anionischen Komplexliganden als Lithium- bzw.
Thallium-Salze isoliert. Die NMR-Spektren von 89, 90, 93 und 94 zeigten jeweils nur einen
Signalsatz, obwohl sich, bedingt durch die Asymmetrie des Liganden und die Chiralität des
oktaedrischen Metallzentrums, fac- und mer-Isomere bilden können. Es konnte nicht
abschließend geklärt werden, ob sich exklusiv das höhersymmetrische fac-Isomer bildet, oder
ob ein Mechanismus aktiv ist, der alle Isomere auf der NMR-Zeitskala schnell ineinander
überführt, sodass die Gegenwart lediglich einer Spezies vorgetäuscht wird. In
elektrochemischen Untersuchungen zeigten die Komplexliganden mehrere irreversible
Oxidationswellen. Ob dieses Verhalten auf eine intramolekulare Kommunikation der
einzelnen redoxaktiven Gruppen zurückzuführen ist, müssen weitergehende Studien zeigen.
Als prinzipieller Beleg für die präparative Anwendbarkeit der Komplexliganden und
Grundlage für die Untersuchung der Koordinationschemie der oktaedrischen
Komplexliganden, wurden PdII-Komplexe von 89 und 93 synthetisiert.
Im Mittelpunkt dieser Arbeit stand die Untersuchung der Reaktivität von Chlorsilanen gegenüber Elektronenpaardonoren. Als Basis hierfür diente die Alkylamin-katalysierte (NMe3, NMe2Et, NEt3) quantitative Disproportionierung von Si2Cl6 bzw. Si3Cl8 zum Neopentasilan 3 und SiCl4 (T ≤ RT, Schema 40). Obwohl diese Reaktion bereits seit über 60 Jahren bekannt ist, sind für ihren Mechanismus nur Vermutungen aufgestellt worden. In Kooperation mit der Gruppe um M. Holthausen ist es hier gelungen, das SiCl2-Amin-Addukt 57 als entscheidende Zwischenstufe zu identifizieren (1H29Si-HMBC-NMR-Experiment sowie DFT-Rechnungen). Si(SiCl3)4, die thermodynamische Senke des Systems, entsteht durch anschließende Insertion des Dichlorsilylens in Si−Cl-Bindungen – bevorzugt am höchst substituierten Si-Zentrum (es bilden sich keine linearen bzw. weniger verzweigten Oligosilane). Zudem lässt sich das koordinierte Amin vom SiCl2-Addukt wieder abspalten, was die Si(SiCl3)4-Synthese überhaupt erst ermöglicht. Dieses Verhalten unterscheidet sich grundlegend vom jenen literaturbekannter stabilisierter Chlorsilylene: hier bindet der Donor so stark an das Si-Atom, dass er den ambiphilen Charakter des Silylens zugunsten der Lewis-basischen Funktion einschränkt. Daher kann man mit diesen Addukten auch keine Oligosilane aufbauen, die mittlerweile auch das Interesse der chemischen Industrie erweckt haben...
Lewis-azide Organoborverbindungen finden Verwendung als Anionensensoren und als (Co)katalysatoren in der Metallocen-vermittelten Olefinpolymerisation bzw. in elektrocyclischen Reaktionen. Mit Lewis-Basen, die sterisch anspruchsvolle Reste tragen, können sie keine stabilen Addukte ausbilden. Solche Systeme werden als „frustrierte Lewispaare“ (FLPs) bezeichnet. Diese zeigen eine besondere kooperative Reaktivität gegenüber kleinen Molekülen und haben sich insbesondere in der metallfreien Aktivierung molekularen Wasserstoffs bewährt. Ein Ziel dieser Arbeit war die Entwicklung einer kostengünstigen, ungefährlichen und einfachen Synthese von (C6F5)2BH („Piers' Boran“). Dieses stark elektrophile Reagenz wird in der FLP-Chemie eingesetzt und monohydroboriert selektiv terminale C≡C-Funktionen. Die literaturbekannten Darstellungsmethoden dieses Borans sind präparativ aufwendig oder erfordern kostspielige Startmaterialien. Die Hydrid-Abstraktion aus dem [(C6F5)2BH2]−-Anion, welches aus einer Eintopfreaktion zwischen BH3·SMe2, C6F5MgBr und ClSiMe3 erhalten wurde und je nach Aufarbeitung in der Zusammensetzung [Mg2(Et2O)3Br2Cl][(C6F5)2BH2] bzw. [Mg(Et2O)2][(C6F5)2BH2]2 kristallisiert, bietet eine Methode zur insitu-Präparation von Piers' Boran. Es kann mit terminalen Alkinen als Monohydroborierungsprodukt oder mit Dimethylsulfid als Lewis-Säure-Base-Addukt abgefangen werden (Abbildung 1). Zusätzlich sind sowohl das Salz [Mg2(Et2O)3Br2Cl][(C6F5)2BH2] als auch das Addukt (C6F5)2BH·SMe2 geeignete Präkursoren für die literaturbekannten FLPs I und II...Mit dem Ziel der Synthese eines Methylen-verbrückten Boran-Phosphans zur H2-Aktivierung wurde der Borinsäureester (C6F5)2BOEt mit dem Lithiumorganyl LiCH2PtBu2 umgesetzt. Dies lieferte nicht die Zielverbindung (C6F5)2BCH2PtBu2, sondern in sehr selektiver Reaktion das bicyclische Phosphoniumborat (EtO)(C6F5)B(CH2)(C6F4)PtBu2 ((III)OEt), welches mit HCl quantitativ zum Chlorid-Addukt (III)Cl reagiert (Abbildung 2). Dadurch wird am (chiralen) Borzentrum eine bessere Abgangsgruppe eingeführt und die luftund wasserstabile Spezies (III)OEt aktiviert. Der Fluorierungsgrad in (III)Cl kann durch Austausch des exocyclischen C6F5-Restes gegen eine Phenylgruppe oder durch eine F/H- bzw. F/tBu-Substitution am verbrückenden C6F4-Ring variiert werden. Nach Ersatz einer tBu-Funktion am Phosphoratom gegen eine Methylgruppe wurde ein zweites Chiralitätszentrum in das Molekülgerüst des Phosphoniumborats eingeführt. Mit Silbersalzen schwach koordinierender Anionen (AgA) reagiert (III)Cl quantitativ zu den entsprechenden Addukten (III)A (A = Acetat, Trifluoracetat, Nitrat, Tosylat, Triflat). Ungeladene Donoren (Do) verdrängen den Triflat-Rest in (III)OTf und führen zu den Salzen [(III)Do]+[OTf]− (Do = OPEt3, Pyridin, H2O)...Das freie Boran [III]+ existiert nur in Gegenwart des sehr schwach koordinierenden Anions [Al[OC(CF3)3]4]–. Mit einer Gutmann-Akzeptornummer (AN) von AN = 87.3 ist es eine stärkere Lewis-Säure als die ungeladene Verbindung (C6F5)3B (AN = 80.0). Auch die – im Vergleich zu (C6F5)3B·Do – kürzeren B–O/N-Bindungslängen in [(III)Do][OTf] (Do = OPEt3, Pyridin, H2O) bestätigen diese Beobachtung. Sowohl die freie Lewis-Säure [III]+ als auch ihr Triflat-Addukt (III)OTf katalysieren die Diels-Alder-Reaktion zwischen Cyclopentadien und 2,5-Dimethyl-,4-benzochinon. Die Reaktion läuft in Gegenwart von [III]+ schneller ab als in Anwesenheit von (III)OTf. Dennoch hat das Triflat-Addukt gegenüber [III]+ den Vorteil, dass im Laufe der Cycloaddition keine konkurrierende Polymerisation des Cyclopentadiens auftritt.
Synthese, Reaktivität und strukturelle Vielfalt im Festkörper von Ferrocenylboranen und -boraten
(2013)
Organische Verbindungen sind für den Einsatz in der Elektronik und Optoelektronik von großem Interesse, da ihre Eigenschaften durch Derivatisierung gezielt verändert werden können. Eine vielversprechende Strategie ist hierbei der Einbau von Hauptgruppenelementen (z.B. Boratomen) in die Kohlenstoffgerüste.
Bislang fehlte jedoch ein detaillierter Vergleich der optischen und elektronischen Eigenschaften einer umfassend charakterisierten Kohlenwasserstoffspezies mit denen einer isostrukturellen Bor-dotierten Verbindung. In unserer Gruppe wird 9,10-Dihydro-9,10-diboraanthracen (DBA) als Bor-haltiger Baustein zum Aufbau lumineszierender Polymere genutzt. Das isostrukturelle Kohlenstoffanalogon zum DBA-Fragment stellt hierbei das Anthracen-Gerüst dar. Vor diesem Hintergrund wurden in dieser Arbeit die elektronischen, strukturellen und optischen Eigenschaften des DBA-Derivats 30 und des Anthracen-Derivats 31 umfassend untersucht und miteinander verglichen, wobei signifikante Unterschiede zwischen der Kohlenstoffverbindung 31 und dem Bor-dotierten Analogon 30 beobachtet wurden.
Poly(pyrazol-1-yl)borate, die sogenannten Skorpionate, repräsentieren eine der etabliertesten Ligandenklassen in der Koordinationschemie und finden aufgrund ihrer Vielseitigkeit zahlreiche Anwendungen. In den letzten Jahren hat sich ein besonderes Interesse an Bis- und Tris(pyrazol-1-yl)boratliganden entwickelt, die mehrere Skorpionateinheiten im selben Molekül vereinen und dadurch kooperative Effekte zwischen den Metallionen fördern. Diese Liganden können sowohl Einsatz in der homogenen Katalyse als auch in den Materialwissenschaften finden. Die bisher in unserer Arbeitsgruppe entwickelten ditopen Bis(pyrazol-1-yl)borate des Typs L (Abb. 3.1) weisen allerdings eine recht hohe Hydrolyseempfindlichkeit auf, deren Ursache wahrscheinlich im elektronenschiebenden Charakter und der Raumerfüllung der Alkylsubstituenten begründet liegt. Im Rahmen der vorliegenden Arbeit wurden daher zunächst die ditopen Skorpionatliganden M2[3] und M2[6] mit Phenyl- und Pentafluorphenylsubstituenten dargestellt, die in darauf folgenden Hydrolysestudien eine im Vergleich zu L erheblich höhere Beständigkeit gegenüber Feuchtigkeit zeigten. Die Umsetzungen der Liganden Li2[Lpara] (Dissertation Dr. Susanne Bieller; Frankfurt 2005) und Li2[6] mit MnII-chlorid verdeutlichten, dass sich das C6F5-substituierte Heteroskorpionat auch in Bezug auf sein koordinationschemisches Verhalten vom tertButyl-substituierten Liganden unterscheidet. Während Li2[Lpara] mit MnCl2 zu einem chlorid-überbrückten, makrozyklischen, dinuklearen Mangankomplex reagiert, wird mit Li2[6] das in Abb. 3.2 dargestellte Koordinationspolymer {(MnCl2)2(Li(THF)3)2[6]}∞ erhalten. Die Ladung der anionischen Polymerkette wird durch Lithium-Gegenionen ausgeglichen. Um die Bildung von diskreten Komplexen einerseits bzw. von Koordinationspolymeren andererseits gezielt steuern zu können, wurden die mit sterisch anspruchsvollen Pyrazolylsubstituenten versehenen Liganden M2[4], M2[5] und M2[7] (Abb. 3.1) dargestellt. Im Zuge der Kristallisation von Li2[4] zeigte sich, dass diese Verbindung eine hohe Affinität für Chloridionen besitzt. Auch in Anwesenheit eines Überschusses Kronenether führen Spuren des Halogenids zur Ausbildung des in Abb 3.3 gezeigten dinuklearen, chloridverbrückten Lithiumkomplexes Li2Cl[4]. Die ausgeprägte Komplexbildungstendenz lässt Li2Cl[4] im Hinblick auf die Entwicklung von Anionenrezeptoren interessant erscheinen. Komplexe, in denen zwei Metallionen durch zwei Heteroskorpionatliganden in eine makrozyklische Struktur eingebunden werden (Tmeta/para in Abb. 3.4), konnten im Rahmen dieser Arbeit nicht isoliert werden. Ein Hinweis, warum dieses Strukturmotiv ungünstig sein könnte, wurde durch die Charakterisierung des auf einem partiell hydrolysierten Derivat von Li2[Lpara] beruhenden CoII-Makrozyklus Co2[23]2 erhalten. Die Analyse der Strukturparameter dieser Verbindung deutet an, dass die Bildung eines Makrozyklus im Fallder unhydrolysierten Heteroskorpionate aufgrund sterischer Wechselwirkungen zwischen den Pyrazolylringen und der Phenylenbrücke benachteiligt sein sollte. Obwohl zwischen Aryl- und Alkyl-basierte n Heteroskorpionaten erhebliche Unterschiede hinsichtlich ihrer Neigung zur hydrolytischen Zersetzung erkennbar sind, zeigen beide Ligandentypen ähnliche Labilitäten gegenüber der stark Lewis-aziden Verbindung Brommanganpentacarbonyl. Die Reaktionen von Li2[Lpara], Li2[3] und Li2[6] mit Mn(CO)5Br führten zur Spaltung von B-N-Bindungen, die in allen drei Fällen durch Kristallisation des in Abb. 3.5 gezeigten, pyrazolid-verbrückten MnI-Carbonylkomplexes 21 dokumentiert werden konnte. Im Gegensatz zu den Heteroskorpionatliganden zeigen oligotope phenylenverknüpfte Homoskorpionate keine Tendenz, sich unter dem Einfluss von Mn(CO)5Br zu zersetzen. Reaktionen der di- und tritopen Tris(pyrazol-1-yl)borate Li2[15], Li2[16] und Li3[18] lieferten die in Abb. 3.6 dargestellten Mangantricarbonylkomplexe (Mn(CO)3)2[15], (Mn(CO)3)2[16] und (Mn(CO)3)3[18] in guten Ausbeuten. Neben der Darstellung dieser, für materialwissenschaftliche Fragestellungen (Koordinationspolymere, Metallorganische Netzwerke) interessanten Liganden, wurde im Rahmen der vorliegenden Arbeit auch der Frage nachgegangen, ob die Verknüpfung zweier Heteroskorpionateinheiten Auswirkungen auf die katalytische Aktivität entsprechender Rhodium-Cyclooctadien-Komplexe in der Polymerisation von Phenylacetylen hat. Sterisch anspruchsvolle Pyrazolylsubstituenten tragende monotope Rhodium-Cyclooctadien- Skorpionatkomplexe konnten in dieser Reaktion bereits erfolgreich als Katalysatoren eingesetzt werden und lieferten regioselektiv cis-transoid-verknüpftes Poly(phenylacetylen). Zunächst wurden die in Abb. 3.7 dargestellten Rhodiumkomplexe (Rh(cod))2[3] und (Rh(cod))2[6] von Bis(pyrazol-1-yl)boraten, die keine sterisch anspruchsvollen Pyrazolylsubstituenten tragen, synthetisiert. Ähnlich wie der analoge einkernige Komplex Rh(cod)[H2Bpz2 ] zeigten (Rh(cod))2[3] und (Rh(cod))2[6] keinerlei katalytische Aktivität. Daher sollten im Anschluss die mit Phenylpyrazolylgruppen ausgestatteten Derivate (Rh(cod))2[5] und (Rh(cod))2[7] synthetisiert und im katalytischen Prozess eingesetzt werden. Im Verlauf dieser Experimente stellte sich heraus, dass die Reaktionen der Alkalimetallskorpionate Li2[5] und K2[7] mit (Rh(Cl)(cod))2 nicht zu den Zielverbindungen, sondern zur Zersetzung der Ligandgerüste führen. In beiden Fällen konnte das Abbauprodukt 22 isoliert werden (Abb. 3.8). Weitere Untersuchungen ergaben, dass 22 in der Lage ist, Phenylacetylen in guten Ausbeuten und regioselektiv (cis-transoid-verknüpftes Poly(phenylacetylen)) zu polymerisieren. 22 stellt somit ein gut zugängliches und leicht zu modifizierendes Katalysatorsystem dar, dessen Optimierung Thema zukünftiger Untersuchungen sein wird.
In der vorliegenden Arbeit galt es, stabile, lumineszente, tetrakoordinierte Organoborane unter Verwendung eines Bor-funktionalisierten ditopen Grundbausteins und unterschiedlicher π- konjugierter Ligandensysteme zu synthetisieren. Die Bifunktionalität sollte die gleichzeitige Einführung von zwei Lewis-Basen erlauben, um eine mögliche elektronische Kommunikation oder einen Energietransfer zwischen den Chromophoren zu gewährleisten.
...
Zusammenfassend war es möglich unter Einsatz eines Bor-haltigen Grundsystems (DBA) durch die Variation der chelatisierenden bzw. verbrückenden π-konjugierten Liganden stabile und effiziente Fluorophore mit nützlichen optischen Eigenschaften zu realisieren.