Refine
Year of publication
Document Type
- Doctoral Thesis (23)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Organokatalyse (2)
- RNS (2)
- 1,3-Diamine (1)
- Acylimin Sulfonylimin (1)
- Alkaloide (1)
- Amidiniumsalze (1)
- Aminosäuren (1)
- Antisense-Nucleinsäuren (1)
- Antisense-Oligonucleotide (1)
- Artifizielle Ribonucleasen (1)
Institute
- Biochemie und Chemie (18)
- Biochemie, Chemie und Pharmazie (4)
- Pharmazie (1)
Im Rahmen dieser Arbeit werden die Synthese, Eigenschaften und Anwendungsmöglichkeiten von Arylalkyl-Rückgrat modifizierten DNA-Oligonucleotiden untersucht. Das erste Ziel der vorliegenden Arbeit war, lipophile, arylalkylmodifizierte Oligonucleotide zu synthetisieren und die Auswirkungen der absoluten Konfiguration der Modifikationen auf die Eigenschaften der resultierenden Duplexe zu untersuchen. Als zweites sollten die Modifikationen in Antisense-Oligonucleotide eingebaut werden um diese auf ihre Anwendbarkeit für die lnhibierung der HCV Genexpression zu testen. Im Rahmen dieser Arbeit wurden 18 unterschiedliche Rückgrat-Modifikationen synthetisiert. Dabei wurde die Alkylkettenlänge wie auch die Größe des aromatischen Systems variiert. Zudem wurde untersucht, welchen Einfluss Ringsubstituenten auf die Eigenschaften der resultierenden Oligonucleotide ausüben. Die Rückgratmodifikationen wurden über die Festphasensynthese nach der Phosphoramiditmethode in Oligonucleotide eingebaut. Als Ausgangsverbindungen für die modifizierten Phosphoramidite dienten die Arylalkylhalogide. Diese wurden in einer dreistufigen in situ Reaktion - über das Grignard-Reagenz zu der entsprechenden cadmiumorganischen Verbindung und deren weitere Reaktion mit Phosphortrichlorid - zu den Arylalkyldichlorphosphanen umgesetzt. Die als Phosphorylierungsreagenzien fungierenden (Arylalkyl)(diisopropylamin)-chlorphosphane konnten durch Umsetzung mit N,N-Diisopropylamin erhalten werden. Die folgende Reaktion mit den 5'-hydroxyl- und aminogeschützten, natürlichen Nucleosiden führte zu den modifizierten Phosphoramidit-Bausteinen. Diese wurden mittels der OligonucleotidFestphasensynthese selektiv, an verschiedenen Positionen in sehr guten Ausbeuten in ModellOligonucleotide eingebaut und die erhaltenen Diastereoisomeren mittels RP-HPLC getrennt. Die einfach modifizierten, diastereoisomerenreinen Oligonucleotide zeigten eine signifikant erhöhte Lipophilie im Vergleich zu den unmodifizierten Strängen. Die Lipophilie nahm bei der Verlängerung der Alkylkettenlänge und der Vergrößerung des aromatischen Ringsystems pro (CH2)-Gruppe sowie pro weiterem Sechsring in konstanten Schritten zu, wodurch die Lipophilie gezielt gesteuert werden kann. Um den Einfluss der Modifikationen im Doppelstrang zu untersuchen wurden die Tm-Werte der Duplexe bestimmt und diese zudem CD- und Fluoreszenzspektroskopisch untersucht. Die erhaltenen Tm-Werte variierten sehr stark in Abhängigkeit der Alkylkettenlänge, der Ringgröße und der absoluten Konfiguration. Mit den Rp-konfigurierten benzyl- (B), (naphth-1-yl)methyl- (I) und 2,4-difluorbenzylmodifizierten (M) Oligonucleotid-Duplexen konnte eine Schmelzpunktserhöhung erzielt werden. Auch konnte mit den 3-(Anthracen-9-yl)propylphosphonaten K eine signifikante Tm-Wert Steigerung aufgrund eines "Dangling-End-Effektes" beobachtet werden. Die erhaltenen Tm-Werte korrelierten hervorragend mit den erhaltenen CD- und Fluoreszenz-Daten. Für die Zuordnung der absoluten Konfiguration der Modifikation wurden drei 3-Phenylpropylphosphonat-Dimere E synthetisiert. Die Zuordnung erfolgte mittels der 2D-ROESY-NMR-Spektren und den berechneten Protonenabständen der diastereoisomerenreinen Dimere sowie über empirische Regeln die von den Methylphosphonaten S abgeleitet wurden. Diese Ergebnisse lassen sich auf längere Oligonucleotide übertragen. Neben den Untersuchungen der Charakteristika der Arylalkyl-Rückgrat modifizierten Oligonucleotide wurden während dieser Arbeit einige Modifikationen gezielt auf ihre Einsetzbarkeit für den Antisense-Einsatz getestet. Als RNA-Zielsequenz wurden die Nucleotide 326-342 der 5'-nicht codierenden Region des Hepatitis C Virus gewählt. Im Rahmen dieser Arbeit wurden fünf unterschiedlich modifizierte Antisense-Oligonucleotide synthetisiert. Die arylalkylmodifizierten Oligonucleotide zeigten gute Hybridisierungseigenschaften gegenüber der sense-DNA bzw. sense-RNA und eine deutlich erhöhte Stabilität gegenüber der Nuclease Pl. Ferner konnte die Lipophilie der Oligonucleotide signifikant gesteigert werden. Die 2-Phenylethylphosphonate (D) und 2,4-Difluorbenzylphosphonate (M) sind zudem in der Lage die RNase H zu aktivieren. Alle dargestellten Antisense-Oligonucleotide wurden in einem zellfreien in vitro- sowie in einem in vitro-Zellkultur-Translations-Assay auf ihr lnhibierungspotential gegen die Hepatitis C Virus Genexpression getestet. Dabei zeigten die Benzylphosphonate (B), Phosphorthioate (Ps) und die 2-Phenylethylphosphonate (D) im zellfreien in vitro Testsystem hohe, spezifische Inhibierungsraten (>87%), bei einer Oligonucleotid-Konzentration von 5 µM. Auch erwiesen sich die arylalkylmodifizierten Antisense-Oligonucleotide, mit Ausnahme der 4-Phenylbutylphosphonate F, als sehr gute lnhibitoren der HCV-Genexpression in CCI13- und HepG2-Zellen.
Künstliche Ribonucleasen, die sequenzspezifisch und effizient die Spaltung von RNA-Phosphordiesterbindungen katalysieren, könnten potenziell nicht nur als biochemische Werkzeuge dienen, sondern auch als Wirkstoffe gegen eine Vielzahl von Erkrankungen, bei denen mRNA oder miRNA involviert sind, eine wichtige Rolle spielen. Obwohl in den letzten beiden Jahrzehnten zahlreiche sequenzspezifische RNA-Spalter entwickelt wurden, bleibt die Spaltaktivität dieser Verbindungen nach wie vor deutlich hinter der ihrer natürlichen Äquivalente zurück. Die Optimierung künstlicher Ribonucleasen und grundlegend dafür die Erforschung der Faktoren, die die Spaltaktivität einer Verbindung beeinflussen, sind daher weiterhin von großem Interesse. Zwar enthalten die meisten künstlichen Ribonucleasen Metallionen, doch sind auch metallfreie RNA-Spalter, zum Beispiel auf der Basis heterocyclischer Guanidine, bekannt. Prinzipiell kann die Hydrolyse des RNA-Rückgrates durch Deprotonierung der nucleophil am Phosphoratom angreifenden 2‘-OH-Gruppe, durch Protonierung der als Abgangsgruppe fungierenden 5‘-OH-Gruppe sowie durch Stabilisierung des bei der Spaltung durchlaufenen dianionischen Phosphorans katalysiert werden. Daher sollten potenzielle RNA-Spalter in der Lage sein, sowohl als Base als auch als Säure wirken zu können, was bei einem pKa-Wert im Bereich von 7 am besten gegeben ist. Fungiert ein und dasselbe Molekül als Protonenakzeptor und -donor, so kommt es im Fall von Guanidinanaloga zu einer Tautomerisierung vom Amino- zum Iminoisomer. Eine möglichst kleine Energiedifferenz zwischen beiden Formen sollte sich daher positiv auf die Spaltaktivität auswirken. In der vorliegenden Arbeit wurde eine Reihe heterocyclischer Guanidine synthetisiert, deren pKa-Werte bestimmt und die jeweiligen Energiedifferenzen zwischen Amino- und Iminotautomer grob mittels AM1-Rechnungen abgeschätzt. In Spaltexperimenten wurden Cy5-markierte RNA-Substrate mit den verschiedenen Verbindungen inkubiert (Spalter-Konzentration: 2 bzw. 10 mM). Die Analyse und Quantifizierung der Spaltprodukte erfolgten anschließend mithilfe eines DNA-Sequenziergerätes. Alle untersuchten und ausreichend löslichen Substanzen, die sowohl einen geeigneten pKa-Wert (6 – 8) als auch eine niedrige Energiedifferenz zwischen Amino- und Iminotautomer (≤ 5 kcal/mol) aufwiesen bzw. bei denen nur der pKa-Wert oder nur die Energiedifferenz in geringem Maße vom Idealwert abwich, spalteten RNA, wenn auch teilweise nur mit einer geringen Aktivität. In den Spaltexperimenten erwiesen sich Guanidinanaloga mit einem großen aromatischen System als besonders aktiv, allen voran 2-Aminoperimidin und seine Derivate, die auch bei Konzentrationen unter 50 µM Spaltaktivität zeigten. Gleichzeitig offenbarten diese Verbindungen in Fluoreszenzkorrelationsspektroskopie Experimenten eine große Tendenz zur Aggregation mit RNA, so dass die Spaltung in diesen Fällen möglicherweise nicht durch Einzelmoleküle, sondern durch Aggregate erfolgte. Um RNA-Substrate auch sequenzspezifisch spalten zu können, wurden PNA-Konjugate des bereits bekannten RNA-Spalters Tris(2-aminobenzimidazol) hergestellt, wobei der Spalter über eine neue, quecksilberfreie Route synthetisiert wurde. Es konnte gezeigt werden, dass diese PNA-Konjugate RNA sequenzspezifisch mit einer Halbwertszeit von etwa 11 h spalten, was im Rahmen der Halbwertszeit vergleichbarer DNA-Konjugate liegt. Um zu untersuchen, ob 2-Aminoperimidine auch als Einzelverbindungen aktiv sind, wurden zwei PNA-Konjugate von am Naphthylring substituierten 2-Aminoperimidin-Derivaten synthetisiert. Beide Konjugate zeigten keinerlei Spaltaktivität, was darauf hindeuten könnte, dass die Hydrolyse des RNA-Rückgrates nur durch mehrere Spalter-Einheiten – kovalent verknüpft oder in Form von Aggregaten – effizient katalysiert werden kann.
Ein wichtiges Element zur Steuerung der Transkriptionseffizienz im Replikationszyklus des HI-Virus ist das Tat/TAR-System. Im Rahmen dieser Arbeit wurden einige kleine heterozyklische Verbindungen synthetisiert, die als potenzielle Inhibitoren des Tat-TAR-Komplexes von HIV-1 wirken sollten. Nach der Synthese des 1H-Pyrazol-3,4,5-triamin-sulfates sollte diese Verbindung dann in größere Strukturmotive eingebettet werden, von denen man sich erhoffte, dass sie in ihrer reduzierten Form in der Lage sein sollten, weitere H-Brücken zu benachbarten Basen der RNA auszubilden und dadurch die Affinität zu erhöhen. Es zeigte sich, dass die im Rahmen dieser Dissertation synthetisierten Phenazinderivate zwar alle mit Natriumdithionit reduziert werden konnten, diese Strukturen aber nicht luftstabil waren.
In den letzten 25 Jahren HIV-Forschung wurden einige Medikamente entwickelt, die in der Lage sind, den Ausbruch der Krankheit AIDS hinauszuzögern. Als Gemeinsamkeit dieser Arzneimittel ist die Interaktion mit regulatorischen Proteinen des HIV-Lebenscyclus zu erwähnen. In den letzten Jahren intensivierte sich jedoch auch die Forschung auf RNA als Angriffsort für Wirkstoffe, da sie in zahlreichen biochemischen Prozessen involviert ist. Aufgrund der vielfältigen Sekundär- und Tertiärstruktur der RNA bietet sie Bindungsstellen für Proteine, Antibiotika und weitere kleine Moleküle. Die Affinität zwischen RNA und dem Liganden, z.B. einem Peptid, basiert auf Wasserstoffbrücken, Coulombschen Kräften und Stapelwechselwirkungen. Das Konzept dieser Arbeit bestand darin, peptidische RNA-Liganden zu entwickeln, die u.a. aufgrund von Stacking mit den Nucleobasen der RNA eine starke Bindung eingehen. In Anbetracht der Tatsache, dass lediglich vier unterschiedliche natürliche aromatische Aminosäuren existieren, wurden Synthesewege entwickelt, um eine Vielfalt nicht-natürlicher Bausteine zu gewährleisten. In diesem Projekt wurden (L)-Methionin bzw. (L)-Glutaminsäure als chirale Ausgangsverbindungen, in Abhängigkeit von der benötigten Seitenkettenlänge (C2 für Met, C3 für Glu), verwendet. Der Schlüsselschritt in beiden Syntheserouten ist mit der Heck- bzw. Negishi- Kupplung eine Übergangsmetall-katalysierte C-C-Knüpfungsreaktion. Auf beiden Wegen konnten in zehn Stufen Fmoc-geschützte -Aminosäuren dargestellt werden. Diese Bausteine wurden zusammen mit natürlichen Aminosäuren zu peptidischen Bibliotheken aufgebaut, die entweder über kombinatorische oder parallele Festphasensynthese hergestellt wurden. Über homogene Assays wurden die besten RNA-Binder identifiziert. In ersten Experimenten wurden ausgewählte Peptide auf ihre Affinität zum TAR-Element von HIV-1 untersucht. Ein Farbstoff-markiertes Tat-Peptid wurde in dieser Anwendung vom Test- Liganden verdrängt. Alternativ konnte über die Fluoreszenz der Pyren-Peptide eine direkte Bestimmung von Bindungskonstanten erfolgen. Mit dem Tripeptid 172 (IC50 = 900 nM, Kd = 50 nM) konnte eine vielversprechende Verbindung identifiziert werden. In Untersuchungen mit HIV-1-infizierten HeLa-P4- (IC50 = 125 microM) bzw. MT-4-Zellen (EC50 = 46 microM) wurde die antivirale Eigenschaft von 172 bewiesen. Des Weiteren wurden u.a. für das Peptid 172 antimikrobielle Tests gegen B. subtilis (MIC = 22 microM) und S. aureus (MIC = 31 microM) durchgeführt.
Die Aufklärung der dreidimensionalen Helix-Struktur der DNA, des Trägermoleküls der genetischen Information aller Lebewesen, durch Watson und Crick im Jahre 1953 ermöglichte eine ganz neue Sichtweise auf ihre Eigenschaften und viele zelluläre Prozesse. Von besonderem Interesse sind hier u.a. Mechanismen, bei denen die DNA an den Phosphaten nucleophil substituiert wird, wie dies beispielsweise bei der Rekombination oder der Transkription geschieht. Dies ist daher interessant, weil sich die DNA gegenüber nucleophilen Angriffen in verschiedenen Experimenten als überaus stabil und reaktionsträge gezeigt hat. Spezialisierte Enzyme wie die Staphylokokkennuklease oder Restriktionsendonukleasen nutzen u.a. Metall-Ionen, um Phosphoryltransfer-Reaktionen zu katalysieren und in eine akzeptable Zeitskala zu verschieben. Die Topoisomerase vom Typ I zeigt eindrucksvoll, dass Katalyse solcher Reaktionen auch ohne Metall-Ion möglich ist, womit auch gleichzeitig die Quelle für eine potentielle oxidative Schädigung der DNA entfernt ist. Leider ist die Palette der natürlich vorkommenden Enzyme begrenzt. Die Erforschung und Entwicklung von künstlichen Nukleasen ermöglicht daher potentiell den zukünftigen Einsatz neuer, maßgeschneiderter Werkzeuge für die Biochemie und die Biotechnologie, sowie langfristig die Bereitstellung neuartiger Chemotherapeutika. Vom aktiven Zentrum der Staphylokokkennuklease abgeleitete Moleküle auf Bisguanidinium-Naphthol-Basis bzw. deren Derivate zeigten in der Vergangenheit deutliche Aktivität als metallfreie, unspezifische Spalter von Plasmid-DNA. Die vorliegende Arbeit beschreibt die weitere Entwicklung und Charakterisierung neuer unspezifischer und potentiell sequenzselektiver Bisguanidinium-Naphthol-Derivate. Hierbei wurde eine neue, zuverlässige Synthesestrategie für Bisguanidinium-Naphthole und parallel dazu ein neuer und flexibler Weg der Flüssigphasen-Synthese von DNA-bindenden Polyamiden ausgearbeitet, um daraus DNA-bindende Konjugate herzustellen. Vier unspezifische Moleküle (45, 94, 95, 97) und zwei Konjugate (46 und 140) wurden dann bei physiologischen Bedingungen auf ihre Spaltaktivität gegenüber Plasmid-DNA und linearer Duplex-DNA untersucht. Bei allen oben genannten Verbindungen konnte - verglichen mit der Stamm-Verbindung 36 aus Vorgängerarbeiten - eine erhöhte Aktivität gegenüber Plasmid-DNA bestimmt werden, die im Falle der Konjugate zwischen 4000- und 8000-fach liegt. Zur weiteren Charakterisierung wurden Experimente in Anwesenheit von EDTA oder Mg2+, zur pH-Abhängigkeit und zur Kinetik der Spalt-Reaktion durchgeführt. Erste Testreihen zum Nachweis sequenzselektiver DNA-Spaltung lieferten kein abschließendes Ergebnis, gaben jedoch erste Hinweise auf Selektivität, welche zur Zeit näher untersucht und überprüft werden.
Auxiliar-vermittelte Synthese von nicht-natürlichen Aminosäuren als Bausteine für RNA-Liganden
(2005)
In den letzten Jahren wurde deutlich, daß mRNAs regulatorische Elemente aufweisen.Ein Beispiel hierfür ist z. B. die Transkription des Human Immunodeficiency Virus Typ1 (HIV-1). Die Arginin-reiche Domäne des Tat-Proteins interagiert hierbei mit einer Bindungstelle innerhalb der Bulge-Region der TAR-RNA. Das Vorliegen des hochkonservierten Tat-TAR-Komplexes ist die Voraussetzung für die effiziente Transkription viraler Gene. Eine kompetitive Bindung synthetischer Liganden an die Bulge-Region sollte daher den viralen Vermehrungszyklus unterbrechen. Hochspezifische Liganden mit inhibitorischem Potential sind somit von größtem Interesse. Für eine hohe Liganden-Affinität sind neben ionischen Wechselwirkungen und HBrücken-Interaktionen vor allem auch Stapelwechselwirkungen (stacking) von entscheidender Bedeutung. Die Ligandensuche wurde auf Tripeptide fokussiert. Da die Anzahl natürlich vorkommender aromatischer Aminosäuren sehr limitiert ist,erfolgte im Rahmen dieser Arbeit zunächst eine stereoselektive Synthese von neuen,nicht-natürlichen Aminosäuren mit heteroaromatischen Seitenketten. Um den generellen Einsatz dieser Bausteine in kombinatorischen Bibliotheken zu demonstrieren,wurden zunächst Tripeptide des Musters Arg-X-Arg hergestellt. Bereits diese Tripeptide zeigten in einem Fluoreszenz-Assay inhibierende Effekte auf den Tat- TAR-Komplex von HIV-1 mit IC50-Werten von 2 - 80 µM. Diese vielversprechenden Liganden wiesen auch in einem Tat-TAR kontrollierten Reportergen-Assay stark inhibierende Wirkung in den Zellkulturen auf. Am Beispiel eines Peptides ließ sich mittels NMR-Spektroskopie eine Komplexkonformation bestimmen, die der des bekannten TAR-Argininamid-Komplexes entspricht. Durch den Einsatz von nichtnatürlichen und Standard-Aminosäuren in kombinatorischen Tripeptidbibliotheken (split and combine-Methode) konnte die Suche von potentiellen Peptid-Liganden um ein Vielfaches erweitert werden. Über ein on-bead-Screening ließen sich weitere vielversprechende TAR-bindende Tripeptide identifizieren. Die RNA-Ligandensuche wurde desweiteren auf die psi-RNA (HIV-1) und auf die mRNA des onkogenen bcr-abl Proteins ausgeweitet. Auch hier konnten einige RNA-bindende Tripeptide isoliert werden.
Als ein wichtiges Teilgebiet der Organokatalyse hat sich in kurzer Zeit die Wasserstoffbrückenvermittelte Katalyse etabliert. Bisher ist eine breite Palette an strukturell und funktionell unterschiedlichen Wasserstoffbrückendonoren synthetisiert worden. Als priviligierte katalytische Einheiten haben sich dabei diejenigen Donorgruppen erwiesen, die zwei Wasserstoffbrücken simultan ausbilden können. Hierzu gehören vornehmlich (Thio-) Harnstoffe sowie die strukturell verwandten Guanidinium‐ und Amidinium-Ionen. Im Rahmen der vorliegenden Doktorarbeit wurden mehrere neue axial‐chirale Amidine als asymmetrische Katalysatoren synthetisiert. Dazu wurden drei aromatische Fragmente mittels zweier Suzuki‐Kupplungen zu terarylischen Nitrilen verknüpft, welche dann mit einem chiralen Aminoalkohol verethert wurden. Die Amidin-Funktion wurde jeweils durch eine diastereokonvergente Makrocyclisierung erzeugt, bei der das Amin an das Nitril addiert wurde und das Chiralitätszentrum der Seitenkette die Konfiguration der chiralen Achse bestimmte. In der protonierten Form fungieren die Katalysatoren als Lewis-Säuren, die über die Amidinium-Funktion zwei nahezu parallele H-Brücken zum Substrat ausbilden. Weiterhin verfügen sie über eine Hydroxyl-Gruppe, die in der Lage ist, eine dritte H-Brücke einzugehen. Anhand der Festkörperstruktur eines Formiat-Salzes konnte diese Dreifachkoordination bestätigt werden. Außerdem wurde in Kinetik-Experimenten eine signifikante Beschleunigung der mit den neuen Verbindungen katalysierten Reaktion im Vergleich zu der mit anderen axial-chiralen Amidinen beobachtet, bei denen nur zwei H-Brücken ausgebildet werden (können). Es gelang, (+)-Estron enantiomerenrein herzustellen, basierend auf einer asymmetrisch katalysierten Diels-Alder-Reaktion mit einem Diketon als Dienophil. Der benötigte Steroid-Vorläufer wurde mit 80 % ee erhalten. Des weiteren wurden andere Reaktionen auf das katalytische Potential der Amidine hin untersucht. Während etwa für die Umsetzung von N-Methylindolen mit Nitroalkenen drastische Beschleunigungen beobachtet wurden, blieben die Enantiomerenüberschüsse jedoch moderat. Schließlich wurden die Amidine auch in ihrer neutralen Brønsted-basischen Form getestet.
Ein bekanntes Beispiel für regulatorische RNA-Protein-Wechselwirkung stellt der Komplex der TAR-RNA von HIV-1 und dem viralen Protein Tat dar. Dieser Komplex ist wichtig für die effiziente Transkription des viralen Genoms. Essentiell für die Erkennung der Stem-Loop Struktur ist die Wechselwirkung des Tat-Proteins mit dem aus drei Nukleotiden bestehenden Bulge der TAR-RNA. Das Wissen über die Prinzipien der Erkennung von Tat zu TAR-RNA sollte es möglich machen, spezifische Liganden zu designen, die als antivirale Tat Antagonisten angreifen können. Das Ziel dieser Arbeit war die Synthese von RNA Liganden für die Festphasenpeptidsynthese (FPPS) basierend auf heteroaromatischen Bausteinen. Als Strategie wurde gewählt, die heteroaromatischen Reste über Amid-Bindungen an ein Fmoc geschütztes (2-Aminoethyl)glycin-Rückgrat einzufügen. Die peptidomimetischen Bausteine X konnten in der FPPS zur Synthese von Tripeptiden mit der allgemeinen Struktur Arg-X-Arg und Modifikationen mit Lysin eingesetzt werden. Die Bindungsaffinitäten der Tripeptide und kleinen Moleküle zur TAR-RNA von HIV-1 wurden über einen fluoreszenzbasierten Assay bestimmt. Der Assay verwendet ein doppelt endmarkiertes Tat-Peptid mit Fluorescein und Rhodamin als Farbstoff. Durch Verdrängung des Tat-Peptides durch einen konkurrierenden Liganden kommt es zur Konformationsänderung des Peptides, die zur Löschung der Lichtemmission führt. Dabei zeigen die Tripeptide H2N-(D)Arg-Lactam-(D)Arg-CONH2 (154) und H2N-(D)Arg-Amidin-(D)Arg-CONH2 (158) IC50-Werte von 2-3 mikroM, die auch durch Fluoreszenz Korrelations Spektroskopie (FCS) bestätigt wurden. In massenspektrometrischen Untersuchungen von 158 bzw. Tat-Protein mit TAR-RNA konnten bei beiden Peptiden 1:1 und 1:2-Komplexe beobachtet werden. 158 zeigt antivirale Eigenschaften (IC50 = 10-50 mikroM) in HeLa P4-Zellassays. Durch NMR-Untersuchungen und molekulardynamische Berechnungen war es möglich, eine Konformationsänderung der TAR-RNA durch eine Wechselwirkung mit Guanidinium-Gruppen festzustellen. Ein weiteres Ziel der Arbeit war daher ausgehend von den gewonnenen Daten die Untersuchung des Bindungskonzeptes von Diaminopyrazolen und Indazolen. Diaminopyrazole mit kleinen Resten und Triaminopyrazol übertreffen im protonierten Zustand den dikationischen Liganden Argininamid. In Übereinstimmung mit dem Bindungsmodell verhalten sich protonierte Aminopyrazole wie „Super-Guanidine“ hinsichtlich der TAR-RNA. Das Einfügen des Triaminopyrazols in ein Phenazin-Grundgerüst führt zu Verbindungen, die im protonierten und reduzierten Zustand zusätzliche Wasserstoffbrückenbindungen eingehen können und nicht planar, aber lipophil sind. Der Austausch von Stickstoff zu Sauerstoff im Phenazinring sollte den reduzierten Zustand stabilisieren. Die resultierende Struktur ist jedoch zersetzlich, so dass auf weitere Untersuchungen verzichtet wurde.
Die vorliegende Arbeit befasst sich mit der Entwicklung von neuen enantioselektiven und diastereoselektiven Brønsted-Säure katalysierten Reaktionen. Das Aktivierungsprinzip entspricht dabei einer klassischen Säure-Base-Reaktion, in der eine Brønsted-Säure einen Elektronenpaar-Donor protoniert, woraus die Bildung eines Ionenpaares resultiert. Erweitert man dieses Konzept durch den Einsatz einer chiralen Protonenquelle und verwendet als Base ein prochirales Substrat, wie ein Imin, so entsteht durch dessen Protonierung ein chirales Ionenpaar, wodurch das Substrat einerseits aktiviert wird und anderseits asymmetrische Induktion über das chirale Anion erfährt. Greift in dem darauf folgenden Schritt ein Nucleophil selektiv über eine Seite des positiv geladenen Elektrophils an, so bildet sich enantioselektiv ein neues Stereozentrum. Die Natur nutzt dieses Prinzip zum Aufbau von optisch reinen α-Aminosäuren. So katalysiert die Glutamatdehydrogenase (GDH) die Darstellung von Glutaminsäure durch Protonierung des entsprechenden α-Iminoglutarats, wodurch der nachfolgende Hydrid-Angriff mittels Nicotinamidadenindinukleotid (NADH) selektiv die (L)-Aminosäure liefert. Dieses Konzept konnte während der eigenen Diplomarbeit auf die enantioselektive Brønsted-Säure katalysierte Transferhydrierung von Ketiminen übertragen werden. Dabei simuliert eine chirale Protonenquelle 1 das Enzym (GDH) und das Reduktionsmittel NADH wird durch ein synthetisches Analogon, das Hantzsch Dihydropyridin 8a ersetzt ... Die vorliegende Arbeit ist kumulativ verfasst. Der größte Teil der hier vorgestellten Ergebnisse ist bereits veröffentlicht oder zur Publikation eingereicht. Die experimentellen Daten sind Bestandteil der in Kapitel 10 aufgeführten Publikationen und werden nicht gesondert diskutiert. Folgende Teile dieser Arbeit wurden bereits veröffentlicht: Highly Enantioselective Organocatalytic Carbonyl-Ene Reaction with strongly Acid, Chiral Brønsted Acids as Efficient Catalysts Rueping M., Theissmann T., Kuenkel A., Koenigs R.M., Angewandte Chemie International Edition 2008, 47, 6798, Angewandte Chemie 2008, 120, 6903. Asymmetric counterion pair catalysis: An enantioselective Brønsted acid-catalyzed protonation Rueping M., Theissmann T., Raja S., Bats J.W., Advanced Synthesis & Catalysis 2008, 350, 1001. An enantioselective chiral brønsted acid catalyzed imino-azaenamine reaction Rueping M., Sugiono E., Theissmann T., Kuenkel A., Köckritz A., Pews-Davtyan A., Nemati N., Beller M., Organic Letters 2007, 9, 1065. Remarkably low catalyst loading in Brønsted acid catalyzed transfer hydrogenations: Enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones Rueping M., Antonchick A.P., Theissmann T., Angewandte Chemie International Edition 2006, 45, 6751, Angewandte Chemie 2006, 118, 6903. A highly enantioselective brønsted acid catalyzed cascade reaction: Organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids Rueping M., Antonchick A.P., Theissmann T., Angewandte Chemie International Edition 2006, 45, 3683, Angewandte Chemie 2006, 118, 3765. Metal-free Brønsted acid catalyzed transfer hydrogenation - New organocatalytic reduction of quinolines Rueping M., Theissmann, T., Atonchick A.P., Synlett 2006, 1071. The twinned crystal structure of diiodobis(triphenylphosphine) palladium(II) dichloromethane disolvate at 173 K Theissmann T., Bolte M., Acta Crystallographica Section E, 2006, E62, 1056. Folgende Manuskripte wurden zur Veröffentlichung eingereicht: First Enantioselective Chiral Brønsted Acid Catalyzed Synthesis of 4´-Substituted Tetrahydroquinolines Rueping M., Theissmann T., Stoeckel M., Atonchick A.P. Asymmetric Organocatalytic Reductions in the Enantioselective Synthesis of Fluoroquinolones, Flumiquine and Levofloxacin Rueping M, Stoeckel M., Theissmann T., Haack K. Synthesis and Structural Investigations of H8-BINOL-derived N-triflylphosphoramides Rueping M., Nachtsheim B.J., Koenigs R., Ieawsuwan W., Theissmann T. Buchbeitrag: Metal-free Brønsted Acid Catalyzed Transfer-Hydrogenation: Enantioselective Synthesis of Tetrahydroquinolines Rueping M., Theissmann T., Atonchick A.P., Catalysts for Fine Chemical Industry, Vol. 5, 2006
In den letzten zwei Dekaden wurde die Rolle der RNA in biologischen Prozessen intensiv untersucht. Man erkannte immer deutlicher, dass ihre Funktion über die einfache Vermittlung von Information von der DNA hin zum Protein weit hinausgeht. So spielt sie eine entscheidende Rolle bei der Genexpression und besitzt darüber hinaus auch katalytische Eigenschaften. Die Entdeckung der reversen Transcriptase beim HI-Virus konnte zeigen, dass genetische Informationen nicht nur in Richtung von DNA zu RNA, sondern auch in Entgegengesetzter Richtung übertragen werden kann. Diese Schlüsselrolle in vielen wichtigen biochemischen Prozessen macht die RNA zu einem viel versprechenden Ziel für die Entwicklung neuer Wirkstoffe, um in diese Prozesse eingreifen zu können. RNA bildet eine Vielzahl von stabilen Sekundär- und Tertiärstrukturen aus, die es Proteinen und Antibiotika ermöglicht, sie zu adressieren. Die bis heute wohl mit Ausnahme des Ribosoms und der tRNAs am besten aufgeklärte Struktur einer RNA ist die der HIV TAR-RNA (transaktivierende Region). Ein essentieller Bestandteil für die virale Genexpression ist die so genannte TAR-RNA. Diese befindet sich am 5-Ende aller viraler Transcripte und bildet eine aus 59 Basen bestehende stem-bulge-loop hairpin Struktur. Diese tritt in Wechselwirkung mit dem tat-Protein. Die Grundlage für die Erkennung des hierbei entstehenden Komplexes ist eine Wechselwirkung von tat mit der bulge- und loop-Region von TAR. Durch Interaktion mit der loop- Region kommt es zur Ausbildung eines CyclinT1/tat Komplexes, der im weiteren dafür verantwortlich ist, dass sich die Rate der Transkription um das mehrere hundertfache erhöht. Ziel der vorliegenden Arbeit war es, Liganden zu synthetisieren, die spezifische Bindungen mit der TAR-RNA aus HIV-1 eingehen. Durch eine solche Bindung ist es möglich, den viralen Replikationszyklus zu unterbrechen. Ausgehend von einem relativ rudimentären Design, basierend auf dem Arginin-Fork-Model von Frankel, gelang es, mit Triaminopyrazol und verschiedenen seiner Derivaten dieses Ziel zu erreichen. Nach erfolgreicher Synthese der Zielstrukturen wurden diese in einem FRET-Assay im Hinblick auf ihre Affinität zu der TAR-RNA getestet. 3,4,5-Triaminopyrazol übertraf trotz seiner geringen Größe und Ladung mit einem IC50-Wert von 30 µM die Werte vieler tetrakationischer Tripeptide (FRET). Nach erfolgreicher Bestimmung der TAR-Affinität von Triaminopyrazol wurde seine Wirkung auf HIV-infizierte Hela P4-Zellen untersucht, die ein Tat-TAR-kontrolliertes Reportergen exprimierten. Dabei zeigte Triaminopyrazol eine Inhibierung mit IC50 = 50 µM. Bis zu einer Konzentration von 500 µM traten hierbei keine toxischen Effekte auf. Dies legt die Vermutung nahe, dass es sich bei Triaminopyrazol tatsächlich um einen tat- Antagonisten handelt. Ebenso konnte gezeigt werden, dass die Wirkung von Triaminopyrazol nicht die eines Entryinhibitors ist, sondern dass die Verbindung in der Lage ist, die Zellmembran zu durchdringen.