Refine
Year of publication
Document Type
- Doctoral Thesis (23)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Organokatalyse (2)
- RNS (2)
- 1,3-Diamine (1)
- Acylimin Sulfonylimin (1)
- Alkaloide (1)
- Amidiniumsalze (1)
- Aminosäuren (1)
- Antisense-Nucleinsäuren (1)
- Antisense-Oligonucleotide (1)
- Artifizielle Ribonucleasen (1)
Institute
- Biochemie und Chemie (18)
- Biochemie, Chemie und Pharmazie (4)
- Pharmazie (1)
Im Rahmen dieser Arbeit werden die Synthese, Eigenschaften und Anwendungsmöglichkeiten von Arylalkyl-Rückgrat modifizierten DNA-Oligonucleotiden untersucht. Das erste Ziel der vorliegenden Arbeit war, lipophile, arylalkylmodifizierte Oligonucleotide zu synthetisieren und die Auswirkungen der absoluten Konfiguration der Modifikationen auf die Eigenschaften der resultierenden Duplexe zu untersuchen. Als zweites sollten die Modifikationen in Antisense-Oligonucleotide eingebaut werden um diese auf ihre Anwendbarkeit für die lnhibierung der HCV Genexpression zu testen. Im Rahmen dieser Arbeit wurden 18 unterschiedliche Rückgrat-Modifikationen synthetisiert. Dabei wurde die Alkylkettenlänge wie auch die Größe des aromatischen Systems variiert. Zudem wurde untersucht, welchen Einfluss Ringsubstituenten auf die Eigenschaften der resultierenden Oligonucleotide ausüben. Die Rückgratmodifikationen wurden über die Festphasensynthese nach der Phosphoramiditmethode in Oligonucleotide eingebaut. Als Ausgangsverbindungen für die modifizierten Phosphoramidite dienten die Arylalkylhalogide. Diese wurden in einer dreistufigen in situ Reaktion - über das Grignard-Reagenz zu der entsprechenden cadmiumorganischen Verbindung und deren weitere Reaktion mit Phosphortrichlorid - zu den Arylalkyldichlorphosphanen umgesetzt. Die als Phosphorylierungsreagenzien fungierenden (Arylalkyl)(diisopropylamin)-chlorphosphane konnten durch Umsetzung mit N,N-Diisopropylamin erhalten werden. Die folgende Reaktion mit den 5'-hydroxyl- und aminogeschützten, natürlichen Nucleosiden führte zu den modifizierten Phosphoramidit-Bausteinen. Diese wurden mittels der OligonucleotidFestphasensynthese selektiv, an verschiedenen Positionen in sehr guten Ausbeuten in ModellOligonucleotide eingebaut und die erhaltenen Diastereoisomeren mittels RP-HPLC getrennt. Die einfach modifizierten, diastereoisomerenreinen Oligonucleotide zeigten eine signifikant erhöhte Lipophilie im Vergleich zu den unmodifizierten Strängen. Die Lipophilie nahm bei der Verlängerung der Alkylkettenlänge und der Vergrößerung des aromatischen Ringsystems pro (CH2)-Gruppe sowie pro weiterem Sechsring in konstanten Schritten zu, wodurch die Lipophilie gezielt gesteuert werden kann. Um den Einfluss der Modifikationen im Doppelstrang zu untersuchen wurden die Tm-Werte der Duplexe bestimmt und diese zudem CD- und Fluoreszenzspektroskopisch untersucht. Die erhaltenen Tm-Werte variierten sehr stark in Abhängigkeit der Alkylkettenlänge, der Ringgröße und der absoluten Konfiguration. Mit den Rp-konfigurierten benzyl- (B), (naphth-1-yl)methyl- (I) und 2,4-difluorbenzylmodifizierten (M) Oligonucleotid-Duplexen konnte eine Schmelzpunktserhöhung erzielt werden. Auch konnte mit den 3-(Anthracen-9-yl)propylphosphonaten K eine signifikante Tm-Wert Steigerung aufgrund eines "Dangling-End-Effektes" beobachtet werden. Die erhaltenen Tm-Werte korrelierten hervorragend mit den erhaltenen CD- und Fluoreszenz-Daten. Für die Zuordnung der absoluten Konfiguration der Modifikation wurden drei 3-Phenylpropylphosphonat-Dimere E synthetisiert. Die Zuordnung erfolgte mittels der 2D-ROESY-NMR-Spektren und den berechneten Protonenabständen der diastereoisomerenreinen Dimere sowie über empirische Regeln die von den Methylphosphonaten S abgeleitet wurden. Diese Ergebnisse lassen sich auf längere Oligonucleotide übertragen. Neben den Untersuchungen der Charakteristika der Arylalkyl-Rückgrat modifizierten Oligonucleotide wurden während dieser Arbeit einige Modifikationen gezielt auf ihre Einsetzbarkeit für den Antisense-Einsatz getestet. Als RNA-Zielsequenz wurden die Nucleotide 326-342 der 5'-nicht codierenden Region des Hepatitis C Virus gewählt. Im Rahmen dieser Arbeit wurden fünf unterschiedlich modifizierte Antisense-Oligonucleotide synthetisiert. Die arylalkylmodifizierten Oligonucleotide zeigten gute Hybridisierungseigenschaften gegenüber der sense-DNA bzw. sense-RNA und eine deutlich erhöhte Stabilität gegenüber der Nuclease Pl. Ferner konnte die Lipophilie der Oligonucleotide signifikant gesteigert werden. Die 2-Phenylethylphosphonate (D) und 2,4-Difluorbenzylphosphonate (M) sind zudem in der Lage die RNase H zu aktivieren. Alle dargestellten Antisense-Oligonucleotide wurden in einem zellfreien in vitro- sowie in einem in vitro-Zellkultur-Translations-Assay auf ihr lnhibierungspotential gegen die Hepatitis C Virus Genexpression getestet. Dabei zeigten die Benzylphosphonate (B), Phosphorthioate (Ps) und die 2-Phenylethylphosphonate (D) im zellfreien in vitro Testsystem hohe, spezifische Inhibierungsraten (>87%), bei einer Oligonucleotid-Konzentration von 5 µM. Auch erwiesen sich die arylalkylmodifizierten Antisense-Oligonucleotide, mit Ausnahme der 4-Phenylbutylphosphonate F, als sehr gute lnhibitoren der HCV-Genexpression in CCI13- und HepG2-Zellen.
Ein wichtiges Element zur Steuerung der Transkriptionseffizienz im Replikationszyklus des HI-Virus ist das Tat/TAR-System. Im Rahmen dieser Arbeit wurden einige kleine heterozyklische Verbindungen synthetisiert, die als potenzielle Inhibitoren des Tat-TAR-Komplexes von HIV-1 wirken sollten. Nach der Synthese des 1H-Pyrazol-3,4,5-triamin-sulfates sollte diese Verbindung dann in größere Strukturmotive eingebettet werden, von denen man sich erhoffte, dass sie in ihrer reduzierten Form in der Lage sein sollten, weitere H-Brücken zu benachbarten Basen der RNA auszubilden und dadurch die Affinität zu erhöhen. Es zeigte sich, dass die im Rahmen dieser Dissertation synthetisierten Phenazinderivate zwar alle mit Natriumdithionit reduziert werden konnten, diese Strukturen aber nicht luftstabil waren.
Künstliche Ribonucleasen, die sequenzspezifisch und effizient die Spaltung von RNA-Phosphordiesterbindungen katalysieren, könnten potenziell nicht nur als biochemische Werkzeuge dienen, sondern auch als Wirkstoffe gegen eine Vielzahl von Erkrankungen, bei denen mRNA oder miRNA involviert sind, eine wichtige Rolle spielen. Obwohl in den letzten beiden Jahrzehnten zahlreiche sequenzspezifische RNA-Spalter entwickelt wurden, bleibt die Spaltaktivität dieser Verbindungen nach wie vor deutlich hinter der ihrer natürlichen Äquivalente zurück. Die Optimierung künstlicher Ribonucleasen und grundlegend dafür die Erforschung der Faktoren, die die Spaltaktivität einer Verbindung beeinflussen, sind daher weiterhin von großem Interesse. Zwar enthalten die meisten künstlichen Ribonucleasen Metallionen, doch sind auch metallfreie RNA-Spalter, zum Beispiel auf der Basis heterocyclischer Guanidine, bekannt. Prinzipiell kann die Hydrolyse des RNA-Rückgrates durch Deprotonierung der nucleophil am Phosphoratom angreifenden 2‘-OH-Gruppe, durch Protonierung der als Abgangsgruppe fungierenden 5‘-OH-Gruppe sowie durch Stabilisierung des bei der Spaltung durchlaufenen dianionischen Phosphorans katalysiert werden. Daher sollten potenzielle RNA-Spalter in der Lage sein, sowohl als Base als auch als Säure wirken zu können, was bei einem pKa-Wert im Bereich von 7 am besten gegeben ist. Fungiert ein und dasselbe Molekül als Protonenakzeptor und -donor, so kommt es im Fall von Guanidinanaloga zu einer Tautomerisierung vom Amino- zum Iminoisomer. Eine möglichst kleine Energiedifferenz zwischen beiden Formen sollte sich daher positiv auf die Spaltaktivität auswirken. In der vorliegenden Arbeit wurde eine Reihe heterocyclischer Guanidine synthetisiert, deren pKa-Werte bestimmt und die jeweiligen Energiedifferenzen zwischen Amino- und Iminotautomer grob mittels AM1-Rechnungen abgeschätzt. In Spaltexperimenten wurden Cy5-markierte RNA-Substrate mit den verschiedenen Verbindungen inkubiert (Spalter-Konzentration: 2 bzw. 10 mM). Die Analyse und Quantifizierung der Spaltprodukte erfolgten anschließend mithilfe eines DNA-Sequenziergerätes. Alle untersuchten und ausreichend löslichen Substanzen, die sowohl einen geeigneten pKa-Wert (6 – 8) als auch eine niedrige Energiedifferenz zwischen Amino- und Iminotautomer (≤ 5 kcal/mol) aufwiesen bzw. bei denen nur der pKa-Wert oder nur die Energiedifferenz in geringem Maße vom Idealwert abwich, spalteten RNA, wenn auch teilweise nur mit einer geringen Aktivität. In den Spaltexperimenten erwiesen sich Guanidinanaloga mit einem großen aromatischen System als besonders aktiv, allen voran 2-Aminoperimidin und seine Derivate, die auch bei Konzentrationen unter 50 µM Spaltaktivität zeigten. Gleichzeitig offenbarten diese Verbindungen in Fluoreszenzkorrelationsspektroskopie Experimenten eine große Tendenz zur Aggregation mit RNA, so dass die Spaltung in diesen Fällen möglicherweise nicht durch Einzelmoleküle, sondern durch Aggregate erfolgte. Um RNA-Substrate auch sequenzspezifisch spalten zu können, wurden PNA-Konjugate des bereits bekannten RNA-Spalters Tris(2-aminobenzimidazol) hergestellt, wobei der Spalter über eine neue, quecksilberfreie Route synthetisiert wurde. Es konnte gezeigt werden, dass diese PNA-Konjugate RNA sequenzspezifisch mit einer Halbwertszeit von etwa 11 h spalten, was im Rahmen der Halbwertszeit vergleichbarer DNA-Konjugate liegt. Um zu untersuchen, ob 2-Aminoperimidine auch als Einzelverbindungen aktiv sind, wurden zwei PNA-Konjugate von am Naphthylring substituierten 2-Aminoperimidin-Derivaten synthetisiert. Beide Konjugate zeigten keinerlei Spaltaktivität, was darauf hindeuten könnte, dass die Hydrolyse des RNA-Rückgrates nur durch mehrere Spalter-Einheiten – kovalent verknüpft oder in Form von Aggregaten – effizient katalysiert werden kann.
Lineare sowie zyklische 3-Alkylpyridinalkaloide sind vor allem in Schwämmen der Ordnung Haplosclerida, zu der auch Haliclona viscosa zählt, weit verbreitet. Die Synthese der zuvor von C. Volk isolierten Haliclamine C und D, des Viscosamins und des Viscosalin C bildete den Ausgangspunkt dieser Arbeit.[1-4] Sie erfolgte ausgehend von den bekannten Synthesen der Cyclostellettamine und Haliclamine[5-7] und gliedert sich in drei Abschnitte: erstens Synthese eines ω-Hydroxyalkylpyridins aus einem Bromalkohol, zweitens Funktionalisierung der Monomere in Abhängigkeit der gewählten Methode zur Di- bzw. Trimerisierung und drittens Verknüpfung und gegebenenfalls Zyklisierung. Durch Anwendung und Weiterentwicklung der bekannten Synthesewege wurden so insgesamt 14 lineare Monomere, zwei zyklische Monomere, 16 Cyclostellettamine, zwei Isocyclostellettamine, sieben Haliclamine, fünf Viscosaline sowie Viscosamin[8] und ein Analogon mit Heptylkette hergestellt. Dieser synthetische Zugang ermöglichte es, sowohl den finalen Strukturbeweis für die zuvor isolierten Verbindungen zu erbringen, als auch durch die Analyse der Fragmentierungs-muster von synthetischen und natürlichen Verbindungen mehr über das Verhalten dieser Verbindungen unter MS-Bedingungen zu erfahren. Die so gewonnenen Erkenntnisse führten dazu, dass drei unbekannte Verbindungen ohne Isolierung der Reinsubstanz mit einer Kombination von MS- und HPLC-Daten identifiziert werden konnten. So konnten das erste monozyklische 3-Alkylpyridinalkaloid marinen Ursprungs und zwei neue Haliclamine identifiziert und synthetisiert werden Des Weiteren gelang es, für die von C. Volk isolierten, jedoch nicht identifizierten Verbindungen Strukturen zu ermitteln bzw. auf Grund der MS-Daten Strukturvorschläge zu machen. Die durch den synthetischen Zugang große Anzahl verfügbarer 3-Alkylpyridinalkaloide ermöglichte außerdem eine systematische Untersuchung über den Zusammenhang von biologischer Aktivität und Struktur. Die Ergebnisse der am Helmholtz Institut für Infektionsforschung durchgeführten Experimente zu den antibakteriellen sowie cytotoxischen Eigenschaften von natürlichen wie auch rein synthetischen 3-Alkylpyridinalkaloiden zeigten, dass die Aktivität sich schon beim Addieren bzw. Subtrahieren einer Methylengruppe in einer Alkylkette signifikant ändert. [1] C. A. Volk, M. Köck, Org. Lett. 2003, 5, 3567-3569. [2] C. A. Volk, M. Köck, Org. Biomol. Chem. 2004, 2, 1827-1830. [3] C. A. Volk, H. Lippert, E. Lichte, M. Köck, Eur. J. Org. Chem. 2004, 3154-3158. [4] C. A. Volk, Dissertation, Johann Wolfgang Goethe Universität (Frankfurt am Main), 2004. [5] A. Grube, C. Timm, M. Köck, Eur. J. Org. Chem. 2006, 1285-1295 und Referenzen darin. [6] J. E. Baldwin, D. R. Spring, C. E. Atkinson, V. Lee, Tetrahedron 1998, 54, 13655-13680. [7] A. Kaiser, X. Billot, A. Gateau-Olesker, C. Marazano, B. C. Das, J. Am. Chem. Soc. 1998, 120, 8026-8034. [8] C. Timm, M. Köck, Synthesis 2006, 2580-2584.
Im Rahmen der Arbeit wurden eine Reihe C2-symmetrischer chiraler Amidiniumsalze hergestellt und ihre katalytische Wirkung in einer Diels-Alder-Reaktion (Schlüsselschritt der Quinkert-Dane-Estronsynthese) untersucht. Für die Synthese der Amidiniumsalze war es erforderlich, einen synthetischen Zugang zu verschiedenen chiralen 1,2-Diaminen zu schaffen und diese herzustellen. Zur Herstellung von chiralen 1,2-Diaminen wurden zwei Synthesekonzepte verfolgt. Zum einen wurden kommerziell zugängliche Aldehyde in einer McMurry-Reaktion in die entsprechenden (E)-Olefine überführt und durch nachfolgende Sharpless-Dihydroxylierung enantioselektiv zu den (R,R)- bzw. (S,S)-Diolen umgesetzt. Diese wurden nach Überführung der Hydroxylgruppen in Mesylat zu den entsprechenden Diaziden umgesetzt. Die Hydrierung der Diazide lieferte schließlich die chiralen 1,2-Diamine. Eine andere Synthesestrategie ging von kommerziell zugänglicher chiraler Weinsäure aus. Die Hydroxylgruppen wurden zunächst durch Überführen in das Acetonid geschützt. Nach Reduktion der Carboxylgruppen zu den primären Alkoholen und nach Kupplung dieser mit Benzylchlorid zu dem entsprechenden Bisbenzyloxymethylderivat konnten die Hydroxylgruppen durch Öffnen des Acetonids entschützt werden. Die freien Hydroxylgruppen wurden in Mesylat überführt. Nach Umsetzung zum Diazid und Abspaltung der Benzylethergruppen konnten die Diazide zu den chiralen 1,2-Diaminen hydriert werden. Ein weiteres chirales 1,2-Diamin wurde durch Nichtabspaltung der Benzyletherschutzgruppen erhalten. Zur Herstellung der C2-symmetrischen chiralen Amidiniumsalze Durch Kupplung verschiedener chiraler 1,2-Diamine mit aus 5-tert-Butyl-isophthalsäure hergestelltem 5-tert-Butyl-isophthalodiimidsäurediethylester-hydrochlorid konnten eine Reihe C2-symmetrischer chiraler Amidiniumsalze mit aromatischen und „aliphatischen“ Resten hergestellt werden. Es wurden mit verschiedenen Katalysatoren Enantiomerenüberschüsse von bis zu 31 % bei 5 °C und bis zu 47 % bei -78 °C erzielt. Es wurden Katalysexperimente in verschiedenen Lösungsmitteln durchgeführt, um deren Einfluß auf Enantioselektivität und Ausbeute zu untersuchen. Dabei konnte gezeigt werden, daß CH2Cl2 in Bezug auf Enantiomerenüberschüsse und Ausbeuten die besten Werte lieferte.
In den letzten zwei Dekaden wurde die Rolle der RNA in biologischen Prozessen intensiv untersucht. Man erkannte immer deutlicher, dass ihre Funktion über die einfache Vermittlung von Information von der DNA hin zum Protein weit hinausgeht. So spielt sie eine entscheidende Rolle bei der Genexpression und besitzt darüber hinaus auch katalytische Eigenschaften. Die Entdeckung der reversen Transcriptase beim HI-Virus konnte zeigen, dass genetische Informationen nicht nur in Richtung von DNA zu RNA, sondern auch in Entgegengesetzter Richtung übertragen werden kann. Diese Schlüsselrolle in vielen wichtigen biochemischen Prozessen macht die RNA zu einem viel versprechenden Ziel für die Entwicklung neuer Wirkstoffe, um in diese Prozesse eingreifen zu können. RNA bildet eine Vielzahl von stabilen Sekundär- und Tertiärstrukturen aus, die es Proteinen und Antibiotika ermöglicht, sie zu adressieren. Die bis heute wohl mit Ausnahme des Ribosoms und der tRNAs am besten aufgeklärte Struktur einer RNA ist die der HIV TAR-RNA (transaktivierende Region). Ein essentieller Bestandteil für die virale Genexpression ist die so genannte TAR-RNA. Diese befindet sich am 5-Ende aller viraler Transcripte und bildet eine aus 59 Basen bestehende stem-bulge-loop hairpin Struktur. Diese tritt in Wechselwirkung mit dem tat-Protein. Die Grundlage für die Erkennung des hierbei entstehenden Komplexes ist eine Wechselwirkung von tat mit der bulge- und loop-Region von TAR. Durch Interaktion mit der loop- Region kommt es zur Ausbildung eines CyclinT1/tat Komplexes, der im weiteren dafür verantwortlich ist, dass sich die Rate der Transkription um das mehrere hundertfache erhöht. Ziel der vorliegenden Arbeit war es, Liganden zu synthetisieren, die spezifische Bindungen mit der TAR-RNA aus HIV-1 eingehen. Durch eine solche Bindung ist es möglich, den viralen Replikationszyklus zu unterbrechen. Ausgehend von einem relativ rudimentären Design, basierend auf dem Arginin-Fork-Model von Frankel, gelang es, mit Triaminopyrazol und verschiedenen seiner Derivaten dieses Ziel zu erreichen. Nach erfolgreicher Synthese der Zielstrukturen wurden diese in einem FRET-Assay im Hinblick auf ihre Affinität zu der TAR-RNA getestet. 3,4,5-Triaminopyrazol übertraf trotz seiner geringen Größe und Ladung mit einem IC50-Wert von 30 µM die Werte vieler tetrakationischer Tripeptide (FRET). Nach erfolgreicher Bestimmung der TAR-Affinität von Triaminopyrazol wurde seine Wirkung auf HIV-infizierte Hela P4-Zellen untersucht, die ein Tat-TAR-kontrolliertes Reportergen exprimierten. Dabei zeigte Triaminopyrazol eine Inhibierung mit IC50 = 50 µM. Bis zu einer Konzentration von 500 µM traten hierbei keine toxischen Effekte auf. Dies legt die Vermutung nahe, dass es sich bei Triaminopyrazol tatsächlich um einen tat- Antagonisten handelt. Ebenso konnte gezeigt werden, dass die Wirkung von Triaminopyrazol nicht die eines Entryinhibitors ist, sondern dass die Verbindung in der Lage ist, die Zellmembran zu durchdringen.
Mit der nichtenzymatischen templatgesteuerten Oligomerisierung von RNA zu Selektionsexperimenten
(2004)
Die vorliegende Dissertation beruht auf der Nichtenzymatischen Templatgesteuerten Oligomerisierung von RNA. Dazu inkubiert man einen farbstoffmarkierten Primer mit komplementären Templaten und aktivierten Monomeren, den 2-Methyl-Phosphorimidazoliden. Die Verlängerung des Primers wurde durch Gelelektrophorese mit anschließender Detektion des Fluoreszenzfarbstoffs nachgewiesen. Eine erfolgreiche Primerverlängerung ist an viele Vorraussetzungen gebunden. Wichtig ist, dass der Duplex in der A-Konformation vorliegt. Deshalb ist es nötig, dass wenigstens der Primer oder das Templat aus RNA besteht. Von großem Vorteil ist, wenn die Basenpaare drei Wasserstoffbrücken ausbilden können. Auch die Stapelwechselwirkung ist ebenso wichtig für eine effiziente Kettenverlängerung, der Einbau von Purinen verläuft besser als der Einbau von Pyrimidinen. In der Arbeit konnte gezeigt werden, dass die Durchführung eines nichtenzymatischen PCR-artigen Experiments möglich ist. Das Verlängerungsprodukt der Hin-Reaktion wurde durch eine präparative Polyacrylamid Gelelektrophorese isoliert. Dieses diente dann als Templat für die Rückreaktion. Das Experiment aus Hin- und Rückreaktion bildete die Grundlage für ein Selektionsexperiment. Die Template wurden dafür um Zufallspositionen erweitert, die zwischen die Primerbindestellen eingefügt wurden. Nach mehrmaligem Durchlaufen des Zyklus aus Hin- und Rückreaktion sollte es sich zeigen, ob sich bestimmte Nucleotide in den Sequenzen angereichert haben. Zur Analyse wurde eine Methode basierend auf einer RP-HPLC entwickelt. Die vollverlängerten Produkte wurden mittels Gelelektrophorese isoliert und durch basische Hydrolyse in Monomere gespalten. Nach anschließender enzymatischer Dephosphorylierung konnte der Anteil der Nucleoside durch RP-HPLC bestimmt werden. Die erste erfolgreiche Anwendung fand diese Methode in der Analyse des Einbaus gegenüber T (U). Hier konkurrieren nämlich D (A) durch Watson/Crick-Paarung und G durch Wobble-Paarung um die Bindestelle. Aus diesem Grund bildeten sich bei Templaten aus C und T und der Inkubation nur mit G-Imidazolid allein die vollverlängerten Produkte zu einem hohen Anteil. Bei Reaktionen mit den Imidazoliden G und D konnte gezeigt werden, dass gegenüber T der Watson/Crick Partner D etwa dreimal häufiger eingebaut wurde als G. Eine weitere wichtige Grundlage für ein Selektionsexperiment bildete die Untersuchung, ob sich gegenüber Zufallspositionen überhaupt eine Kettenverlängerung feststellen lässt. Dazu wurde die Verlängerung unterschiedlicher Primer mit Templaten untersucht, die an einer oder mehreren Stellen Positionen aus [C/T] oder [A/C/G/T] enthielten. Es war deutlich zu sehen, dass die Verlängerung an solchen random-Sequenzen möglich ist. Die besten Ergebnisse wurden erzielt, wenn man entweder nur mit 2-MeImpG allein oder mit 2-MeImpG und 2-MeImpD inkubierte. Die Verwendung aller vier Imidazolide aus C, D, G und U führte zwar auch zu vollverlängerten Produkten, ihr Anteil war aber deutlich geringer. Eine andere wichtige Aufgabe dieser Dissertation war die Aufklärung der Ursache für die kritische Länge der Template. Es konnte gezeigt werden, dass die Bildung von G-Quadrupelsträngen nicht der Grund ist, der den reibungslosen Einbau an längeren "homoC" Templaten verhindert. Zusätze von NaCl oder LiCl beeinflussten die Effizienz dieser Reaktionen kaum. Gute Resultate wurden bei der Verlängerung an Homopyrimidin-Templaten, die aus C und T bestanden, erzielt. Das vollverlängerte Produkt bildete sich bei der Verwendung von 2-MeImpG und 2-MeImpD in hohen Ausbeuten. Interessante Resultate ergaben sich im Fall des Einbaus von C an "homoG" Templaten. Die besten Ergebnisse wurden erzielt, wenn völlig auf Na+-Ionen verzichtet wurde. Die Verwendung von Li-Imidazoliden, die auch in höherer Konzentration eingesetzt werden konnten, steigerte die Effizienz dieser Reaktionen deutlich. Durch das reduzierte stacking liefen alle Reaktionen allerdings langsamer und unvollständiger ab als beim Einbau von G an "homoC" Templaten. Die Stabilisierung des Duplexes durch stacking ist also entscheidend für erfolgreiche Primerverlängerungen. Überraschend schlechte Ergebnisse waren zu beobachten, wenn die Template gleichzeitig aus G und C aufgebaut waren. Die vollständig verlängerten Produkte wurden zu einem sehr geringen Anteil gebildet. Zusätzlich zum geringeren stacking der Pyrimidine, wurden Unregelmäßigkeiten in der Doppelhelixstruktur, die durch das abwechselnde Auftreten von Purinen und Pyrimidinen verursacht worden sind, als Ursache ausgemacht. Als neue Vorrausetzung für eine effiziente Kettenverlängerung hat sich also das Vorliegen einer regelmäßigen Doppelhelixstruktur herausgestellt.
Die vorliegende Arbeit befasst sich mit der Entwicklung von neuen enantioselektiven und diastereoselektiven Brønsted-Säure katalysierten Reaktionen. Das Aktivierungsprinzip entspricht dabei einer klassischen Säure-Base-Reaktion, in der eine Brønsted-Säure einen Elektronenpaar-Donor protoniert, woraus die Bildung eines Ionenpaares resultiert. Erweitert man dieses Konzept durch den Einsatz einer chiralen Protonenquelle und verwendet als Base ein prochirales Substrat, wie ein Imin, so entsteht durch dessen Protonierung ein chirales Ionenpaar, wodurch das Substrat einerseits aktiviert wird und anderseits asymmetrische Induktion über das chirale Anion erfährt. Greift in dem darauf folgenden Schritt ein Nucleophil selektiv über eine Seite des positiv geladenen Elektrophils an, so bildet sich enantioselektiv ein neues Stereozentrum. Die Natur nutzt dieses Prinzip zum Aufbau von optisch reinen α-Aminosäuren. So katalysiert die Glutamatdehydrogenase (GDH) die Darstellung von Glutaminsäure durch Protonierung des entsprechenden α-Iminoglutarats, wodurch der nachfolgende Hydrid-Angriff mittels Nicotinamidadenindinukleotid (NADH) selektiv die (L)-Aminosäure liefert. Dieses Konzept konnte während der eigenen Diplomarbeit auf die enantioselektive Brønsted-Säure katalysierte Transferhydrierung von Ketiminen übertragen werden. Dabei simuliert eine chirale Protonenquelle 1 das Enzym (GDH) und das Reduktionsmittel NADH wird durch ein synthetisches Analogon, das Hantzsch Dihydropyridin 8a ersetzt ... Die vorliegende Arbeit ist kumulativ verfasst. Der größte Teil der hier vorgestellten Ergebnisse ist bereits veröffentlicht oder zur Publikation eingereicht. Die experimentellen Daten sind Bestandteil der in Kapitel 10 aufgeführten Publikationen und werden nicht gesondert diskutiert. Folgende Teile dieser Arbeit wurden bereits veröffentlicht: Highly Enantioselective Organocatalytic Carbonyl-Ene Reaction with strongly Acid, Chiral Brønsted Acids as Efficient Catalysts Rueping M., Theissmann T., Kuenkel A., Koenigs R.M., Angewandte Chemie International Edition 2008, 47, 6798, Angewandte Chemie 2008, 120, 6903. Asymmetric counterion pair catalysis: An enantioselective Brønsted acid-catalyzed protonation Rueping M., Theissmann T., Raja S., Bats J.W., Advanced Synthesis & Catalysis 2008, 350, 1001. An enantioselective chiral brønsted acid catalyzed imino-azaenamine reaction Rueping M., Sugiono E., Theissmann T., Kuenkel A., Köckritz A., Pews-Davtyan A., Nemati N., Beller M., Organic Letters 2007, 9, 1065. Remarkably low catalyst loading in Brønsted acid catalyzed transfer hydrogenations: Enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones Rueping M., Antonchick A.P., Theissmann T., Angewandte Chemie International Edition 2006, 45, 6751, Angewandte Chemie 2006, 118, 6903. A highly enantioselective brønsted acid catalyzed cascade reaction: Organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids Rueping M., Antonchick A.P., Theissmann T., Angewandte Chemie International Edition 2006, 45, 3683, Angewandte Chemie 2006, 118, 3765. Metal-free Brønsted acid catalyzed transfer hydrogenation - New organocatalytic reduction of quinolines Rueping M., Theissmann, T., Atonchick A.P., Synlett 2006, 1071. The twinned crystal structure of diiodobis(triphenylphosphine) palladium(II) dichloromethane disolvate at 173 K Theissmann T., Bolte M., Acta Crystallographica Section E, 2006, E62, 1056. Folgende Manuskripte wurden zur Veröffentlichung eingereicht: First Enantioselective Chiral Brønsted Acid Catalyzed Synthesis of 4´-Substituted Tetrahydroquinolines Rueping M., Theissmann T., Stoeckel M., Atonchick A.P. Asymmetric Organocatalytic Reductions in the Enantioselective Synthesis of Fluoroquinolones, Flumiquine and Levofloxacin Rueping M, Stoeckel M., Theissmann T., Haack K. Synthesis and Structural Investigations of H8-BINOL-derived N-triflylphosphoramides Rueping M., Nachtsheim B.J., Koenigs R., Ieawsuwan W., Theissmann T. Buchbeitrag: Metal-free Brønsted Acid Catalyzed Transfer-Hydrogenation: Enantioselective Synthesis of Tetrahydroquinolines Rueping M., Theissmann T., Atonchick A.P., Catalysts for Fine Chemical Industry, Vol. 5, 2006
Seit gezeigt wurde, dass die genetischen Informationen in Form von DNA gespeichert wird, ist das Geheimnis der DNA-Struktur gelöst, der Mechanismus der Gen-Expression und die Rolle der RNA verstanden worden. Das Interesse für die Chemie und die Biologie der Nukleinsäuren ist somit kontinuierlich gewachsen. Besonders interessant ist die RNA, die eine Rolle als ein Vermittler der genetischen Informationen (mRNA) spielt, aber auch als Bote von Aminosäuren (tRNA). Sie ist im Ribosom (rRNA) anwesend, arbeitet als Templat in Telomerasen für DNA-Synthese und hat außerdem wichtige Funktionen in der RNA-Spaltung, z.B. bei Ribozymen wie RNAse P inne. Betreffend bestimmter Spaltstellen in RNA hat auch das Phänomen der siRNA beträchtliche Aufmerksamkeit in diesem Prozess erregt. Der sogenannte RISC-Komplex wird programmiert, einzelsträngige RNA mit hoher Sequenz-Spezifität zu schneiden. Die für die RNA-Interferenz verantwortliche zelluläre Maschinerie ist auch an der Bilbung von MikroRNAs beteiligt. RNA-Interferenz ist heute eines der nützlichsten Werkzeuge in functional genomics geworden. Die große Hoffnung ist, dass es auch vielleicht in der Therapie angewandt werden könnte. Das Thema meiner Doktorarbeit trägt den Titel „Synthesis of Site-Specific Artificial Ribonucleases“. Es beschäftigt sich mit der Entwicklung künstlicher bindungsspezifischer Ribonucleasen. Diese künstlichen Katalysatoren sind im Wesentlichen aus drei Gründen bedeutsam: Zum einen liegt eine mögliche Anwendung in der Affinity-Cleavage (Affinitätsspaltung), eine Technik, die Bindungsstellen von RNA-Liganden durch das kovalente Anbringen eines Reagenzes lokalisiert, das zwischen den Nukleinsäuren schneidet. Zum anderen entsteht die Möglichkeit, neue Werkzeuge für eine gezielte Manipulation großer RNA-Moleküle zu schaffen. Die Vorteile des Ansatzes sind, dass man damit beliebige Zielsequenzen anwählen kann. Das Problem dieser Strategie ist die Notwendigkeit, hohe Genauigkeit im Spaltungssschritt zu erreichen, wie zum Beispiel mit natürlichen Ribozymen. Wichtige Ergebnisse wurden auch während meiner Arbeit erhalten, mit einem Fall von genauer Spaltung zwischen zwei Basen. Der dritte Grund ist die potentielle Anwendung als katalytische antisense-Oligonucleotide in der Chemotherapie. Gegenwärtig existieren zwei Ansätze, unspezifische künstliche RNasen relativ kleiner Größe zu schaffen. Der erste basiert auf Metallkomplexen und führt im Allgemeinen zu höheren Raten. Die Idee ist, ein Metall als elektrophiles Zentrum zur Unterstützung der Transesterfikation zu nutzen. Unter diesen Katalysatoren enthalten die effizientesten Lanthanid-Ionen, Cu2+ und Zn2+. Der zweite Ansatz zielt darauf ab, metallfreie künstliche Ribonucleasen zu entwickeln. Die Vorteile dieser Strategie sind, den Katalysator von der Stabilität der Metallkomplexe, die in vivo problematisch sein könnten, unabhängig zu machen. In diesem Ansatz wird die natürliche Katalyse durch Enzyme simuliert. Zweckmäßige Gruppen mit beschränkter katalytischer Aktivität z.B. als Nucleophile, Säuren oder Basen, werden in einer Weise zusammengesetzt, um Kooperation zu ermöglichen. Potente Katalysatoren können so ohne die Notwendigkeit von Metallen als Cofaktoren erzeugt werden. ...
Die Entwicklung künstlicher Ribonucleasen bietet das Potential, Werkzeuge für die Biotechnologie und langfristig neuartige Pharmaka bereitzustellen. 2-Aminobenzimidazole haben sich als metallfreie Katalysatoren zur unspezifischen Spaltung von Ribonucleinsäuren bewährt. In der vorliegenden Arbeit sollte das Konzept von künstlichen Ribonucleasen auf Basis dieser Molekülklasse auf seine Tragfähigkeit gerprüft werden. Außerdem sollten weitere mechanistische Erkenntnisse über die Katalyse der RNA-Hydrolyse durch 2-Aminobenzimidazole gewonnen werden. Hierzu wurden kupplungsfähige 2-Aminobenzimidazol-Derivate hergestellt und anschließend an RNA-Liganden gekuppelt. Diese Konjugate wurden auf ihre Spaltaktivität gegenüber RNA bei physiologischen Bedingungen sowie auf ihre Substrat- und Ortsspezifität getestet. Zunächst wurden Tripeptidkonjugate synthetisiert und untersucht. Hierbei konnte eine gegenüber den unkonjugierten Spezies erhöhte Affinität der Konjugate zum Substrat festgestellt werden. Auch wurde gezeigt, dass 2-Aminobenzimidazole, die in wässriger Lösung zur Aggregation neigen, auch als Einzelmoleküle in der Lage sind, die RNA-Hydrolyse zu katalysieren. Die Substrat- und Ortsspezifität der Tripeptidkonjugate ließ jedoch zu wünschen übrig. Durch die Konjugation von 2-Aminobenzimidazol-Derivaten an Antisense-DNA gelang schließlich die sequenz- und ortsspezifische Affinitätsspaltung von RNA mit beachtlicher Aktivität. Damit war die Tragfähigkeit des Konzepts bewiesen. Ferner konnten durch die weitere Untersuchung der Konjugate starke Indizien gewonnen werden, die das Modell, auf dem die Auswahl der 2-Aminobenzimidazole als katalytische Einheit beruht, stützen.