Institutes
Refine
Year of publication
Document Type
- Article (88)
- Doctoral Thesis (34)
- Book (13)
- Working Paper (8)
- Contribution to a Periodical (2)
- Review (2)
- Report (1)
Language
- English (110)
- German (37)
- Multiple languages (1)
Has Fulltext
- yes (148)
Is part of the Bibliography
- no (148)
Keywords
- Frankfurt am Main (5)
- Carbonate (3)
- Baltic age spectra (2)
- COSMO-CLM (2)
- Detrital zircons (2)
- Devonian (2)
- Holy Cross Mountains (2)
- Microbialite (2)
- Mid-German Crystalline Zone (2)
- Mistral (2)
Institute
- Geowissenschaften / Geographie (148)
- Präsidium (15)
- Biochemie, Chemie und Pharmazie (2)
- Biowissenschaften (2)
- Psychologie und Sportwissenschaften (2)
- Senckenbergische Naturforschende Gesellschaft (2)
- Biodiversität und Klima Forschungszentrum (BiK-F) (1)
- Evangelische Theologie (1)
- Gesellschaftswissenschaften (1)
- Institut für sozial-ökologische Forschung (ISOE) (1)
This paper investigates the global stratospheric Brewer–Dobson circulation (BDC) in the ERA5 meteorological reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). The analysis is based on simulations of stratospheric mean age of air, including the full age spectrum, with the Lagrangian transport model CLaMS (Chemical Lagrangian Model of the Stratosphere), driven by reanalysis winds and total diabatic heating rates. ERA5-based results are compared to results based on the preceding ERA-Interim reanalysis. Our results show a significantly slower BDC for ERA5 than for ERA-Interim, manifesting in weaker diabatic heating rates and higher age of air. In the tropical lower stratosphere, heating rates are 30 %–40 % weaker in ERA5, likely correcting a bias in ERA-Interim. At 20 km and in the Northern Hemisphere (NH) stratosphere, ERA5 age values are around the upper margin of the uncertainty range from historical tracer observations, indicating a somewhat slow–biased BDC. The age trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, as climate models predict in response to global warming. However, the age decrease is not linear but steplike, potentially caused by multi-annual variability or changes in the observations included in the assimilation. During the 2002–2012 period, the ERA5 age shows a similar hemispheric dipole trend pattern as ERA-Interim, with age increasing in the NH and decreasing in the Southern Hemisphere (SH). Shifts in the age spectrum peak and residual circulation transit times indicate that reanalysis differences in age are likely caused by differences in the residual circulation. In particular, the shallow BDC branch accelerates in both reanalyses, whereas the deep branch accelerates in ERA5 and decelerates in ERA-Interim.
Previous investigation of seismic anisotropy indicates the presence of a simple mantle flow regime beneath the Turkish-Anatolian Plateau and Arabian Plate. Numerical modeling suggests that this simple flow is a component of a large-scale global mantle flow associated with the African superplume, which plays a key role in the geodynamic framework of the Arabia-Eurasia continental collision zone. However, the extent and impact of the flow pattern farther east beneath the Iranian Plateau and Zagros remains unclear. While the relatively smoothly varying lithospheric thickness beneath the Anatolian Plateau and Arabian Plate allows progress of the simple mantle flow, the variable lithospheric thickness across the Iranian Plateau is expected to impose additional boundary conditions on the mantle flow field. In this study, for the first time, we use an unprecedented data set of seismic waveforms from a network of 245 seismic stations to examine the mantle flow pattern and lithospheric deformation over the entire region of the Iranian Plateau and Zagros by investigation of seismic anisotropy. We also examine the correlation between the pattern of seismic anisotropy, plate motion using GPS velocities and surface strain fields. Our study reveals a complex pattern of seismic anisotropy that implies a similarly complex mantle flow field. The pattern of seismic anisotropy suggests that the regional simple mantle flow beneath the Arabian Platform and eastern Turkey deflects as a circular flow around the thick Zagros lithosphere. This circular flow merges into a toroidal component beneath the NW Zagros that is likely an indicator of a lateral discontinuity in the lithosphere. Our examination also suggests that the main lithospheric deformation in the Zagros occurs as an axial shortening across the belt, whereas in the eastern Alborz and Kopeh-Dagh a belt-parallel horizontal lithospheric deformation plays a major role.
Wildfire is the most common disturbance type in boreal forests and can trigger significant changes in forest composition. Waterlogging in peatlands determines the degree of tree cover and the depth of the burnt horizon associated with wildfires. However, interactions between peatland moisture, vegetation composition and flammability, and fire regime in forest and forested peatland in Eurasia remain largely unexplored, despite their huge extent in boreal regions. To address this knowledge gap, we reconstructed the Holocene fire regime, vegetation composition, and peatland hydrology at two sites located in predominantly light taiga (Pinus sylvestris Betula) with interspersed dark taiga communities (Pinus sibirica, Picea obovata, Abies sibirica) in western Siberia in the Tomsk Oblast, Russia. We found marked shifts in past water levels over the Holocene. The probability of fire occurrence and the intensification of fire frequency and severity increased at times of low water table (drier conditions), enhanced fuel dryness, and an intermediate dark-to-light taiga ratio. High water level, and thus wet peat surface conditions, prevented fires from spreading on peatland and surrounding forests. Deciduous trees (i.e. Betula) and Sphagnum were more abundant under wetter peatland conditions, and conifers and denser forests were more prevalent under drier peatland conditions. On a Holocene scale, severe fires were recorded between 7.5 and 4.5 ka with an increased proportion of dark taiga and fire avoiders (Pinus sibirica at Rybnaya and Abies sibirica at Ulukh–Chayakh) in a predominantly light taiga and fire-resister community characterised by Pinus sylvestris and lower local water level. Severe fires also occurred over the last 1.5 kyr and were associated with a declining abundance of dark taiga and fire avoiders, an expansion of fire invaders (Betula), and fluctuating water tables. These findings suggest that frequent, high-severity fires can lead to compositional and structural changes in forests when trees fail to reach reproductive maturity between fire events or where extensive forest gaps limit seed dispersal. This study also shows prolonged periods of synchronous fire activity across the sites, particularly during the early to mid-Holocene, suggesting a regional imprint of centennial- to millennial-scale Holocene climate variability on wildfire activity. Humans may have affected vegetation and fire from the Neolithic; however, increasing human presence in the region, particularly at the Ulukh–Chayakh Mire over the last 4 centuries, drastically enhanced ignitions compared to natural background levels. Frequent warm and dry spells predicted by climate change scenarios for Siberia in the future will enhance peatland drying and may convey a competitive advantage to conifer taxa. However, dry conditions will probably exacerbate the frequency and severity of wildfire, disrupt conifers' successional pathway, and accelerate shifts towards deciduous broadleaf tree cover. Furthermore, climate–disturbance–fire feedbacks will accelerate changes in the carbon balance of boreal peatlands and affect their overall future resilience to climate change.
Wildfire is the most common disturbance type in boreal forests and can trigger significant changes in forest composition. Waterlogging in peatlands determines the degree of tree cover and the depth of the burning horizon associated with wildfires. However, interactions between peatland moisture, vegetation composition and flammability, and fire regime in forested peatland in Eurasia remain largely unexplored, despite their huge extent in boreal regions. To address this knowledge gap, we reconstructed the Holocene fire regime, vegetation composition and peatland hydrology at two sites in Western Siberia near Tomsk Oblast, Russia. The palaeoecological records originate from forested peatland areas in predominantly light taiga (Pinus-Betula) with increase in dark taiga communities (Pinus sibirica, Picea obovata, Abies sibirica) towards the east. We found that the past water level fluctuated between 8 and 30 cm below the peat surface. Wet peatland conditions promoted broadleaf trees (Betula), whereas dry peatland conditions favoured conifers and a greater forest density (dark-to-light-taiga ratio). The frequency and severity of fire increased with a declining water table that enhanced fuel dryness and flammability and at an intermediate forest density. We found that the probability of intensification in fire severity increased when the water
level declined below 20 cm suggesting a tipping point in peatland hydrology at which wildfire regime intensifies. On a Holocene scale, we found two scenarios of moisture-vegetation-fire interactions. In the first, severe fires were recorded 45 between 7.5 and 4.5 ka BP with lower water level and an increased proportion of dark taiga and fire avoiders (Pinus sibirica at Rybanya and Abies sibirica at Ulukh Chayakh) mixed into the dominantly light taiga and fire-resister community of Pinus
sylvestris. The second occurred over the last 1.5 ka and was associated with fluctuating water tables, a declining abundance of fire avoiders, and an expansion of fire invaders (Betula). These findings suggest that frequent high-severity fires can lead to compositional and structural changes in forests when trees fail to reach reproductive maturity between fire events or where extensive forest gaps limit seed dispersal. This study also shows prolonged periods of synchronous fire activity across the sites, particularly during the early to mid-Holocene, suggesting a regional imprint of centennial to millennial-scale Holocene climate
variability on wildfire activity. Increasing human presence in the region of the Ulukh-Chayakh Mire near Teguldet over the last four centuries drastically enhanced ignitions compared to natural background levels. Frequent warm and dry spells predicted for the future in Siberia by climate change scenarios will enhance peatland drying and may convey a competitive advantage to conifer taxa. However, dry conditions, particularly a water table decline below the threshold of 20 cm, will probably exacerbate the frequency and severity of wildfire, disrupt conifers’ successional pathway and accelerate shifts towards more fire-adapted broadleaf tree cover. Furthermore, climate-disturbance-fire feedbacks will accelerate changes in the carbon balance of forested boreal peatlands and affect their overall future resilience to climate change.
State of the simulation of mesoscale winds in the Mediterranean and opportunities for improvements
(2022)
The Mediterranean region is a densely populated and economically relevant area with complex orography including mountain ranges, islands, and straits. In combination with pressure gradients, this creates many mesoscale wind systems that cause, e.g., wind gusts and wildfire risk in the Mediterranean. This article reviews the recent state of the science of several mesoscale winds in the Mediterranean and associated processes. Previous work, including case studies on several time ranges and resolutions, as well as studies on these winds under future climate conditions, is discussed. Simulations with grid spacings of 25 to 50 km can reproduce winds driven by large-scale pressure patterns such as Mistral, Tramontane, and Etesians. However, these simulations struggle with the correct representation of winds channeled in straits and mountain gaps and around islands. Grid spacings of 1–3 km are certainly necessary to resolve these small-scale features. The smaller grid spacings are widely used in case studies, but not yet in simulations over large areas and long periods, which also could help to understand the interaction between small-scale phenomena in separate locations. Furthermore, by far not all Mediterranean straits, islands, and mountain gaps were studied in-depth and many interesting Mediterranean small-scale winds still need to be studied.
Africa's protected areas (PAs) are the last stronghold of the continent's unique biodiversity, but they appear increasingly threatened by climate change, substantial human population growth, and land-use change. Conservation planning is challenged by uncertainty about how strongly and where these drivers will interact over the next few decades. We investigated the combined future impacts of climate-driven vegetation changes inside African PAs and human population densities and land use in their surroundings for 2 scenarios until the end of the 21st century. We used the following 2 combinations of the shared socioeconomic pathways (SSPs) and representative greenhouse gas concentration pathways (RCPs): the “middle-of-the-road” scenario SSP2–RCP4.5 and the resource-intensive “fossil-fueled development” scenario SSP5–RCP8.5. Climate change impacts on tree cover and biome type (i.e., desert, grassland, savanna, and forest) were simulated with the adaptive dynamic global vegetation model (aDGVM). Under both scenarios, most PAs were adversely affected by at least 1 of the drivers, but the co-occurrence of drivers was largely region and scenario specific. The aDGVM projections suggest considerable climate-driven tree cover increases in PAs in today's grasslands and savannas. For PAs in West Africa, the analyses revealed climate-driven vegetation changes combined with hotspots of high future population and land-use pressure. Except for many PAs in North Africa, future decreases in population and land-use pressures were rare. At the continental scale, SSP5–RCP8.5 led to higher climate-driven changes in tree cover and higher land-use pressure, whereas SSP2–RCP4.5 was characterized by higher future population pressure. Both SSP–RCP scenarios implied increasing challenges for conserving Africa's biodiversity in PAs. Our findings underline the importance of developing and implementing region-specific conservation responses. Strong mitigation of future climate change and equitable development scenarios would reduce ecosystem impacts and sustain the effectiveness of conservation in Africa.
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN)1,2,3,4. However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region5,6. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles—comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO3–H2SO4–NH3 nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere.
The Altenberg–Teplice Volcanic Complex (ATVC) is a large ~ NNW–SSE trending volcano-plutonic system in the southern part of the Eastern Erzgebirge (northern Bohemian Massif, south-eastern Germany and northern Czech Republic). This study presents high precision U–Pb CA-ID-TIMS zircon ages for the pre-caldera volcano-sedimentary Schönfeld–Altenberg Complex and various rocks of the caldera stage: the Teplice rhyolite, the microgranite ring dyke, and the Sayda-Berggießhübel dyke swarm. These data revealed a prolonged time gap of ca. 7–8 Myr between the pre-caldera stage (Schönfeld–Altenberg Complex) and the climactic caldera stage. The volcanic rocks of the Schönfeld–Altenberg Complex represent the earliest volcanic activity in the Erzgebirge and central Europe at ca. 322 Ma. The subsequent Teplice rhyolite was formed during a relatively short time interval of only 1–2 Myr (314–313 Ma). During the same time interval (314–313 Ma), the microgranite ring dyke intruded at the rim of the caldera structure. In addition, one dyke of the Sayda-Berggiesshübel dyke swarm was dated at ca. 314 Ma, while another yielded a younger age (ca. 311 Ma). These data confirm the close genetic and temporal relationship of the Teplice rhyolite, the microgranite ring dyke, and (at least part of) the Sayda-Berggießhübel dyke swarm. Remarkably, the caldera formation in the south of the Eastern Erzgebirge (caldera stage of ATVC: 314–313 Ma) and that in the north (Tharandt Forest caldera: 314–312 Ma) occurred during the same time. These data document a large ~ 60 km NNW–SSE trending magmatic system in the whole Eastern Erzgebirge. For the first time, Hf-O-isotope zircon data was acquired on the ring dyke from the ATVC rocks to better characterize its possible sources. The homogeneous Hf-O-isotope zircon data from the microgranite ring dyke require preceding homogenization of basement rocks. Some small-scale melts that were produced during Variscan amphibolite-facies metamorphism show similar Hf-O-isotope characteristics and can therefore be considered as the most probable source for the microgranite ring dyke melt. In addition, a second source with low oxygen isotope ratios (e.g. basic rocks) probably contributed to the melt and possibly triggered the climactic eruption of the Teplice rhyolite as well as the crystal-rich intrusion of the ring dyke.
Frankfurt ist Knotenpunkt globaler Güter-, Finanz-, Wissens- und Migrationsbewegungen. Die Arbeitsmärkte und -verhältnisse in der Stadt sind Ausdruck einer globalen Verwobenheit, die diskursiv oft mit dem Label der ›Global City‹ markiert wird. In einer Zeit, in der Arbeit als Feld der Produktion und Reproduktion weitreichenden Transformationsprozessen ausgesetzt ist, in der das sogenannte Normalarbeitsverhältnis zunehmend erodiert, in der Arbeitsverhältnisse oft räumlich, sozial und zeitlich entgrenzt und flexibilisiert sind und in der gut bezahlte Jobs und schlecht- bezahlte, teils prekarisierte Formen der Beschäftigung koexistieren – zum Teil im gleichen Betrieb –, muss es Aufgabe wirtschaftsgeographischer Forschung sein, die Lebenswelten von Arbeitenden in einer räumlichen Perspektive zu beleuchten. Genau dies will der vorliegende Band tun. Er versammelt engagierte, theoretisch gesättigte und empirisch geerdete Beiträge von Studierenden des Instituts für Humangeographie, die einen kritischen Blick auf die Formen, Praktiken, Beziehungen und gesellschaftliche Einbettung von Arbeit in unterschiedlichen Branchen in der ›Global City‹ Frankfurt werfen.