24.10.Pa Thermal and statistical models
Refine
Document Type
- Preprint (5)
- Conference Proceeding (2)
- Doctoral Thesis (1)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- A+A collisions (1)
- Monte-Carlo model for relativistic heavy ion collisions (1)
- Physik (1)
- Statistical model (1)
- canonical strangeness suppression (1)
- equation of state (1)
- hadronization (1)
- heavy ion (1)
- percolation (1)
- quark gluon plasma (1)
Institute
This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation will be investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction will be tested against qualitative and quantitative predictions.
We argue that the shape of the system-size dependence of strangeness production in nucleus-nucleus collisions can be understood in a picture that is based on the formation of clusters of overlapping strings. A string percolation model combined with a statistical description of the hadronization yields a quantitative agreement with the data at sqrt s_NN = 17.3 GeV. The model is also applied to RHIC energies.
We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical hadronization approach, we have studied the chemical equilibration of the system as a function of center of mass energy and of the parameters of the source. Additionally, we have tested and compared different versions of the statistical model, with special emphasis on possible explanations of the observed strangeness hadronic phase space under-saturation.
The equilibration of hot and dense nuclear matter produced in the central cell of central Au+Au collisions at RHIC (sqrt s = 200 A GeV) energies is studied within a microscopic transport model. The pressure in the cell becomes isotropic at t approx 5 fm/c after beginning of the collision. Within the next 15 fm/c the expansion of matter in the cell proceeds almost isentropically with the entropy per baryon ratio S/A approx 150, and the equation of state in the (P,epsilon) plane has a very simple form, P=0.15 epsilon. Comparison with the statistical model of an ideal hadron gas indicates that the time t approx 20 fm/c may be too short to reach the fully equilibrated state. Particularly, the creation of long-lived resonance-rich matter in the cell decelerates the relaxation to chemical equilibrium. This resonance-abundant state can be detected experimentally after the thermal freeze-out of particles.
Local equilibrium in heavy ion collisions. Microscopic model versus statistical model analysis
(1999)
The assumption of local equilibrium in relativistic heavy ion collisions at energies from 10.7 AGeV (AGS) up to 160 AGeV (SPS) is checked in the microscopic transport model. Dynamical calculations performed for a central cell in the reaction are compared to the predictions of the thermal statistical model. We find that kinetic, thermal and chemical equilibration of the expanding hadronic matter are nearly approached late in central collisions at AGS energy for t >= 10 fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing energy, 40 AGeV and 160 AGeV. These violations of local equilibrium indicate that a fully equilibrated state is not reached, not even in the central cell of heavy ion collisions at energies above 10 AGeV. The origin of these findings is traced to the multiparticle decays of strings and many-body decays of resonances.
Thermodynamical variables and their time evolution are studied for central relativistic heavy ion collisions from 10.7 to 160 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits drastic deviations from equilibrium during the early high density phase of the collision. Local thermal and chemical equilibration of the hadronic matter seems to be established only at later stages of the quasi-isentropic expansion in the central reaction cell with volume 125 fm 3. Baryon energy spectra in this cell are reproduced by Boltzmann distributions at all collision energies for t > 10 fm/c with a unique rapidly dropping temperature. At these times the equation of state has a simple form: P = (0.12 - 0.15) Epsilon. At SPS energies the strong deviation from chemical equilibrium is found for mesons, especially for pions, even at the late stage of the reaction. The final enhancement of pions is supported by experimental data.
Local kinetic and chemical equilibration is studied for Au+Au collisions at 10.7 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits dramatic deviations from equilibrium during the high density phase of the collision. Thermal and chemical equilibration of the hadronic matter seems to be established in the later stages during a quasiisentropic expansion, observed in the central reaction cell with volume 125 fm3. For t > 10 fm/c the hadron energy spectra in the cell are nicely reproduced by Boltzmann distributions with a common rapidly dropping temperature. Hadron yields change drastically and at the late expansion stage follow closely those of an ideal gas statistical model. The equation of state seems to be simple at late times: P = 0.12 Epsilon. The time evolution of other thermodynamical variables in the cell is also presented.
REVTEX, 27 pages incl. 10 figures and 3 tables; Phys. Rev. C (in press) Journal-ref: Phys.Rev. C62 (2000) 064906. We study the local equilibrium in the central V = 125 fm3 cell in heavy-ion collisions at energies from 10.7 A GeV (AGS) to 160 A GeV (SPS) calculated in the microscopic transport model. In the present paper the hadron yields and energy spectra in the cell are compared with those of infinite nuclear matter, as calculated within the same model. The agreement between the spectra in the two systems is established for times t >= 10 fm/c in the central cell. The cell results do not deviate noticeably from the infinite matter calculations with rising incident energy, in contrast to the apparent discrepancy with predictions of the statistical model (SM) of an ideal hadron gas. The entropy of this state is found to be very close to the maximum entropy, while hadron abundances and energy spectra differ significantly from those of the SM.