25.75.-q Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions)
Refine
Year of publication
Document Type
- Preprint (9)
- Doctoral Thesis (7)
- Article (3)
- Report (1)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
- Schwerionenphysik (5)
- Photon (2)
- dileptons (2)
- thermalization (2)
- A+A collisions (1)
- ALICE (1)
- ALICE <Teilchendetektor> (1)
- Anisotropie (1)
- CERN (1)
- Chirale Symmetrie (1)
Institute
In the work presented herein the microscopic transport model BAMPS (Boltzmann Approach to Multi-Parton Scatterings) is applied to simulate the time evolution of the hot partonic medium that is created in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in Pb+Pb collisions at the recently started Large Hadron Collider (LHC). The study is especially focused on the investigation of the nuclear modification factor R_{AA}, that quantifies the suppression of particle yields at large transverse momentum with respect to a scaled proton+proton reference, and the simultaneous description of the collective properties of the medium in terms of the elliptic flow v_{2} within a common framework.
The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector.
The search for a modification of hadron properties inside nuclear matter at normal and/or high temperature and density is one of the more interesting issues of modern nuclear physics. Dilepton experiments, by providing interesting results, give insight into the properties of strong interaction and the nature of hadron mass generation. One of these research tools is the HADES spectrometer. HADES is a high acceptance dilepton spectrometer installed at the heavy-ion synchrotron (SIS) at GSI, Darmstadt. The main physics motivation of HADES is the measurement of e+e- pairs in the invariant-mass range up to 1 GeV/c2 in pion- and proton-induced reactions, as well as in heavy-ion collisions. The goal is to investigate the properties of the vector mesons rho, omega and of other hadrons reconstructed from e+e- decay pairs. Dileptons are penetrating probes allowing to study the in-medium properties of hadrons. However, the measurement of such dilepton pairs is difficult because of a very large background from other processes in which leptons are created. This thesis presents the analysis of the data provided by the first physic run done with the HADES spectrometer. For the first time e+e- pairs produced in C+C collisions at an incident energy of 2 GeV per nucleon have been collected with sufficient statistics. This experiment is of particular importance since it allows to address the puzzling pair excess measured by the former DLS experiment at 1.04 AGeV. The thesis consists of five chapters. The first chapter presents the physics case which is addressed in the work. In the second chapter the HADES spectrometer is introduced with the characteristic of specific detectors which are part of the spectrometer. Chapter three focusses on the issue of charged-particle identification. The fourth chapter discusses the reconstruction of the di-electron spectra in C+C collisions. In this part of the thesis a comparison with theoretical models is included as well. The conclusion and final remarks are given in chapter five.
In this work we study the non-equilibrium dynamics of a quark-gluon plasma, as created in heavy-ion collisions. We investigate how big of a role plasma instabilities can play in the isotropization and equilibration of a quark-gluon plasma. In particular, we determine, among other things, how much collisions between the particles can reduce the growth rate of unstable modes. This is done both in a model calculation using the hard-loop approximation, as well as in a real-time lattice simulation combining both classical Yang-Mills-fields as well as inter-particle collisions. The new extended version of the simulation is also used to investigate jet transport in isotropic media, leading to a cutoff-independent result for the transport coefficient $hat{q}$. The precise determination of such transport coefficients is essential, since they can provide important information about the medium created in heavy-ion collisions. In anisotropic media, the effect of instabilities on jet transport is studied, leading to a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth. The investigation of collective modes in the hard-loop limit is extended to fermionic modes, which are shown to be all stable. Finally, we study the possibility of using high energy photon production as a tool to experimentally determine the anisotropy of the created system. Knowledge of the degree of local momentum-space anisotropy reached in a heavy-ion collision is essential for the study of instabilities and their role for isotropization and thermalization, because their growth rate depends strongly on the anisotropy.
This article generalizes Schwinger’s mechanism for particles production in the arbitrary finite field volume. McLerran-Venugopolan(MV) model and iterative solution of DGLAP equation in the double leading log approximation for small x gluon distribution function were used to derive the new formula for initial chromofield energy density. This initial chromofield energy is distributed among color neutral clusters or strings of different length. This strings are stretched by receding nucleus. From the proposed mechanism of string fragmentation or color field decay based on exact solution of Dirac equation in the different finite volume, the new formulae for esimated baryon kinetic energy loss and rapidity spectrum of produced partons were derived.
In der vorliegenden Dissertation werden mit einem chiralen SU(3)-Modell die thermodynamischen Eigenschaften von stark wechselwirkender hadronischer Materie und die mikroskopischen Medium-Eigenschaften von Hadronen bei hohen Temperaturen und hohen Baryonen-Dichten untersucht. Das verwendete chirale Modell ist ein erweitertes sigma-omega-Modell in Mittlerer-Feld-Näherung (Mean-Field) mit baryonischen und mesonischen effektiven Freiheitsgraden; es basiert auf spontan gebrochener chiraler Symmetrie und Skaleninvarianz. Das Phasenübergangsverhalten des chiralen Modells wird systematisch untersucht und dabei gezeigt, dass es signifikant von den Kopplungen zusätzlicher schwererer hadronischer Freiheitsgrade ('Resonanzen') abhängt. Durch entsprechende Ankopplung des niedrigsten baryonischen Dekupletts kann ein Phasendiagramm in qualitativer Übereinstimmung mit aktuellen Vorhersagen der Gitter-QCD erreicht werden. Alternativ wird die Ankopplung einer schweren baryonischen Test-Resonanz untersucht, welche effektiv für das Spektrum der schweren hadronischen Zustände steht. Hier ergibt sich für einen bestimmten Bereich der Kopplungen sogar eine quantitative Übereinstimmung zu den Gitter-QCD-Vorhersagen bei gleichzeitig guter Beschreibung der Grundzustandseigenschaften von Kernmaterie. Für diese Zustandsgleichung werden Vorhersagen (innerhalb der Modellannahmen) zu geplanten Experimenten gemacht -- konkret wird gezeigt, dass der Phasenübergangsbereich für das CBM Experiment des geplanten Beschleunigerzentrums FAIR an der GSI Darmstadt experimentell zugänglich ist. Weiter wird das chirale Modell auf die Beschreibung von experimentellen Teilchenzahlverhältnissen (Yield-Ratios) aus Schwerionen-Kollisionen von AGS, SPS und RHIC angewendet. Studiert werden Parametersätze mit stark unterschiedlichen Phasendiagrammen aufgrund unterschiedlicher Ankopplung des baryonischen Dekupletts sowie ein ideales Hadronengas. Bei den niedrigen und mittleren Kollisionsenergien zeigt sich eine verbesserte Beschreibung durch die chiralen Parametersätze im Vergleich zum idealen Hadronengas, besonders deutlich für Parametersätze mit Phasendiagramm ähnlich der Vorhersage aus der Gitter-QCD. Die Wechselwirkung im chiralen Modell führt zu Medium-Modifikationen der chemischen Potentiale und der Hadronenmassen. Die resultierenden Ausfrierparameter mu und T sind deshalb gegenüber dem nichtwechselwirkenden Fall signifikant verändert. An den Ausfrierpunkten zeigen sich deutliche Abweichungen der effektiven Massen von den Vakuummassen (5 bis 15 %) und des effektiven baryo-chemischen Potentials vom ursprünglichen Wert (bis zu 20 %). Ferner werden universelle Kriterien für das Ausfrieren diskutiert und isentrope Expansion zu den Ausfrierpunkten untersucht, wo sich eine starke Abhängigkeit der Trajektorien von der Zustandsgleichung ergibt. Schließlich wird der Einfluss des Dilaton-Felds (Gluonkondensat) auf das Phasenübergangsverhalten bei mu=0 studiert, indem das Gluonkondensat an die Dekuplett-Baryonen gekoppelt wird. Es zeigt sich, dass dadurch eine Restauration der Skaleninvarianz im Modell möglich wird, die gleichzeitig auch eine vollständige Restauration der chiralen Symmetrie bewirkt. Die Restauration der Skaleninvarianz erfolgt erst bei Temperaturen, die oberhalb der chiralen Restauration (im nichtseltsamen Sektor) liegen. Diese Modellerweiterung ermöglicht es, zukünftig das Phasenübergangsverhalten -- Restauration von chiraler Symmetrie und Skaleninvarianz -- auch bei nichtverschwindenden Baryonendichten zu untersuchen. Die Resultate dieser Arbeit zeigen die Wichtigkeit der schweren hadronischen Zustände, der Resonanzen, für das QCD-Phasendiagramm. Für die Zukunft ist eine Ankopplung des gesamten hadronischen Massenspektrums an das Modell erstrebenswert, wie sich sowohl aus der Untersuchung der Modellerweiterung um eine Test-Resonanz als auch aus der Anwendung auf experimentelle Teilchenzahlverhältnisse ergibt.
Nuclear matter, that takes the form of protons and neutrons under normal conditions, is subject to a phase transition at high temperatures and densities, liberating the quarks and gluons that are usually confined in nucleons and creating a medium of free partons: the Quark-Gluon-Plasma. It is generally believed that this state of matter can be created in relativistic collisions of heavy nuclei. The study of the medium created in these collisions is the subject of heavy-ion physics. One topic within this field are particles with high transverse momentum, that are created in initial hard collisions between partons of the incoming nuclei. The energetic partons lose energy due to interactions with the medium before they fragment into a jet of hadrons. Due to momentum conservation, these jets are usually created as back-to-back pairs, or less commonly as three-jet or photon-jet events, where a single jet is balanced by a hard photon. The energy loss can be measured using correlations between particles with high transverse momenta. A trigger particle is selected with very high transversemomentum and the distribution of the azimuthal angle of associated particles in the same event is studied, relative to the azimuth of the trigger particle.These azimuthal correlations show a peak for opening angles around 0 from particles selected from the same jet, and a second peak at opening angles around 180 degrees from back-to-back di-jets. Random combinations with the underlying event generate a flat background, extending over the full range of opening angles. The STAR experiment observed a modification of these correlations in central Au+Au collisions, where trigger particles with 4GeV < pT(trigger) < 6GeV and associated particles with 2GeV < pT(trigger) < 4GeV were selected. A strong suppression has been observed for away-side correlations in central Au+Au collisions, relative to p+p, d+Au and peripheral Au+Au data. This can be explained by assuming two partons going in opposite directions, where at least one has to travel a large distance through the medium, causing energy loss and effectively removing the event from the analysis. For near-side correlations, no significant modification has been observed, which can be explained by surface emission, assuming that the observed jets have travelled only a short distance in themedium, not leaving enough time for interactions with the medium. Both trigger- and associated particles in a correlation analysis with charged hadrons are subject to modifications due to the medium. This can be avoided by using photon-jet events instead of di-jets, because the photon does not interact with the medium and therefore provides the best available measure of the properties of the opposite jet in the presence of the underlying event. This thesis studies azimuthal correlations between regions of high energy deposition in the electro-magnetic calorimeter as trigger- and charged tracks as associated particles. The data sample had been enriched by online event selection, allowing for the selection of trigger particles with a transverse energy of more than 10GeV and associated particles with more than 2,3 or 4 GeV. The away-side yield per trigger particle is strongly suppressed like in correlations between charged particles. The near-side yield is also reduced by about a factor two, clearly different from charged correlations. The trigger particles are a mixture of photon pairs from the decays of neutral pions and single photons, mainly from photon-jet events, with small contributions from other hadron decays and fragmentation photons. Pythia simulations predict a ratio of neutral pions to prompt photons of 3.5:1 in p+p collisions with the same cuts as in the presented analysis. Single particle suppression further reduces this ratio in central Au_Au collisions, down to about 0.8:1, indicating that the majority of trigger particles in central Au+Au collisions are prompt photons. The increasing fraction of prompt photon triggers without an accompanying jet and therefore zero associated yield reduces the average yield per trigger particle. The magnitude of the observed effect agrees well with the expectation from Pythia simulations and the assumption of a single particle suppression by a factor 4-5. An analysis of away-side correlations is more difficult, because both photon-jet and di-jet events contribute. The aim is the separation of these two contributions. As a clear separation is not possible with the available dataset, a comparison with two different scenarios is given, where a surprisingly small suppression by only a factor of about 5 is favoured for both dijet- and photon-jet-correlations. A separate measurement of both contributions will be possible by a shower-shape analysis with the EM calorimeter or a comparison with charged correlations in the same kinematic region.
We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the late stage cannot significantly disturb the initial back-to-back azimuthal correlations of DDbar pairs. Thus, a decrease or the complete absence of these initial correlations does indicate frequent interactions of heavy-flavor quarks and also light partons in the partonic stage, which are essential for the early thermalization of light partons.
We develop a 1+1 dimensional hydrodynamical model for central heavy-ion collisions at ultrarelativistic energies. Deviations from Bjorken's scaling are taken into account by implementing finite-size profiles for the initial energy density. The calculated rapidity distributions of pions, kaons and antiprotons in central Au+Au collisions at the c.m. energy 200 AGeV are compared with experimental data of the BRAHMS Collaboration. The sensitivity of the results to the choice of the equation of state, the parameters of initial state and the freeze-out conditions is investigated. The best fit of experimental data is obtained for a soft equation of state and Gaussian-like initial profiles of the energy density.
We calculate the asymptotic high-energy amplitude for electrons scattering at one ion, as well as at two colliding ions, by means of perturbation theory. We show that the interaction with one ion eikonalizes and that the interaction with two ions causally decouples. We are able to put previous results on perturbative grounds and propose further applications for the obtained rules for interactions on the light cone. We discuss the implications of the eikonal amplitude on the pair production probability in ultrarelativistic peripheral heavy-ion collisions. In this context the Weizsäcker-Williams method is shown to be exact in the ultrarelativistic limit, irrespective of the produced particles’ mass. A new equivalent single-photon distribution is derived, which correctly accounts for Coulomb distortions. The impact on single-photon induced processes is discussed.