25.75.-q Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions)
Refine
Year of publication
Document Type
- Article (11)
- Preprint (9)
- Doctoral Thesis (7)
- Report (1)
Has Fulltext
- yes (28)
Is part of the Bibliography
- no (28)
Keywords
- Schwerionenphysik (5)
- LHC (2)
- Photon (2)
- Relativistic heavy-ion collisions (2)
- dileptons (2)
- thermalization (2)
- A+A collisions (1)
- ALICE (1)
- ALICE <Teilchendetektor> (1)
- AdS/CFT (1)
Institute
The transverse momentum (pT) distribution of primary charged particles is measured in minimum bias (non-single-diffractive) p-Pb collisions at sNN−−−√=5.02 TeV with the ALICE detector at the LHC. The pT spectra measured near central rapidity in the range 0.5<pT<20 GeV/c exhibit a weak pseudorapidity dependence. The nuclear modification factor RpPb is consistent with unity for pT above 2 GeV/c. This measurement indicates that the strong suppression of hadron production at high pT observed in Pb-Pb collisions at the LHC is not due to an initial-state effect. The measurement is compared to theoretical calculations.
Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au + Au collisions at √sNN = 130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π− = 0.161± 0.002(stat) ± 0.024(syst) and K−/π− = 0.146± 0.002(stat) ± 0.022(syst) for the most central collisions. The K+/π− ratio is lower than the same ratio observed at the SPS while the K−/π− is higher than the SPS result. The ratios are enhanced by about 50% relative to p + p and p¯ + p collision data at similar energies.
Dilepton production in pp and Au+Au nucleus–nucleus collisions at s=200GeV as well as in In+In and Pb+Au at 158AGeV is studied within the microscopic HSD transport approach. A comparison to the data from the PHENIX Collaboration at RHIC shows that standard in-medium effects of the ρ,ω vector mesons—compatible with the NA60 data for In+In at 158AGeV and the CERES data for Pb+Au at 158AGeV—do not explain the large enhancement observed in the invariant mass regime from 0.2 to 0.5 GeV in Au+Au collisions at s=200 GeV relative to pp collisions.
We solve the coupled Wong Yang–Mills equations for both U(1) and SU(2) gauge groups and anisotropic particle momentum distributions numerically on a lattice. For weak fields with initial energy density much smaller than that of the particles we confirm the existence of plasma instabilities and of exponential growth of the fields which has been discussed previously. Also, the SU(2) case is qualitatively similar to U(1), and we do find significant “abelianization” of the non-Abelian fields during the period of exponential growth. However, the effect nearly disappears when the fields are strong. This is because of the very rapid isotropization of the particle momenta by deflection in a strong field on time scales comparable to that for the development of Yang–Mills instabilities. This mechanism for isotropization may lead to smaller entropy increase than collisions and multiplication of hard gluons, which is interesting for the phenomenology of high-energy heavy-ion collisions.
We propose that the measurement of the transverse momentum dependence of the double ratio of the nuclear modification factors of charm and bottom jets, RAAc(pT)/RAAb(pT), in central nuclear collisions at the LHC will provide an especially robust observable that can be used to differentiate Standard Model perturbative QCD predictions from recently proposed strong coupling string drag models derived using the AdS/CFT conjecture.
We calculate the antibaryon-to-baryon ratios, p̄/p,Λ̄/Λ,Ξ/Ξ, and Ω/Ω for Au+Au collisions at RHIC (sNN=200 GeV). The effects of strong color fields associated with an enhanced strangeness and diquark production probability and with an effective decrease of formation times are investigated. Antibaryon-to-baryon ratios increase with the color field strength. The ratios also increase with the strangeness content |S|. The netbaryon number at midrapidity considerably increases with the color field strength while the netproton number remains roughly the same. This shows that the enhanced baryon transport involves a conversion into the hyperon sector (hyperonization) which can be observed in the (Λ−Λ̄)/(p−p̄) ratio.
Production of J/ψ mesons in heavy ion collisions is considered within the statistical coalescence model. The model is in agreement with the experimental data of the NA50 Collaboration for Pb+Pb collisions at 158 AGeV in a wide centrality range, including the so-called “anomalous” suppression domain. The model description of the J/ψ data requires, however, strong enhancement of the open charm production in central Pb+Pb collisions. This model prediction may be checked in the future SPS runs.
We consider J/ψ production in heavy ion collisions at RHIC energies in the statistical coalescence model with exact (canonical ensemble) charm conservation. Charm quark–antiquark pairs are assumed to be created in primary hard parton collisions, but open and hidden charm particles are formed at the hadronization stage according to the laws of statistical mechanics. The dependence of the J/ψ production on both the number of nucleon participants and the collision energy is studied. The model predicts J/ψ suppression for low energies, whereas at the highest RHIC energy the model reveals J/ψ enhancement.
In the work presented herein the microscopic transport model BAMPS (Boltzmann Approach to Multi-Parton Scatterings) is applied to simulate the time evolution of the hot partonic medium that is created in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in Pb+Pb collisions at the recently started Large Hadron Collider (LHC). The study is especially focused on the investigation of the nuclear modification factor R_{AA}, that quantifies the suppression of particle yields at large transverse momentum with respect to a scaled proton+proton reference, and the simultaneous description of the collective properties of the medium in terms of the elliptic flow v_{2} within a common framework.
The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector.