## 25.75.Dw Particle and resonance production

### Refine

#### Document Type

- Preprint (3)
- Article (2)
- Doctoral Thesis (2)
- Conference Proceeding (1)

#### Language

- English (8)

#### Has Fulltext

- yes (8)

#### Is part of the Bibliography

- no (8)

#### Keywords

- Dileptonen (1)
- Dirac-Gleichung (1)
- Dirac-Operator (1)
- Dirac-Vakuum (1)
- Hades (1)
- Paarerzeugung (1)
- Quantenelektrodynamik (1)
- Resonanzen (1)
- Schwerionenphysik (1)
- Spurselektion (1)

#### Institute

The search for a modification of hadron properties inside nuclear matter at normal and/or high temperature and density is one of the more interesting issues of modern nuclear physics. Dilepton experiments, by providing interesting results, give insight into the properties of strong interaction and the nature of hadron mass generation. One of these research tools is the HADES spectrometer. HADES is a high acceptance dilepton spectrometer installed at the heavy-ion synchrotron (SIS) at GSI, Darmstadt. The main physics motivation of HADES is the measurement of e+e- pairs in the invariant-mass range up to 1 GeV/c2 in pion- and proton-induced reactions, as well as in heavy-ion collisions. The goal is to investigate the properties of the vector mesons rho, omega and of other hadrons reconstructed from e+e- decay pairs. Dileptons are penetrating probes allowing to study the in-medium properties of hadrons. However, the measurement of such dilepton pairs is difficult because of a very large background from other processes in which leptons are created. This thesis presents the analysis of the data provided by the first physic run done with the HADES spectrometer. For the first time e+e- pairs produced in C+C collisions at an incident energy of 2 GeV per nucleon have been collected with sufficient statistics. This experiment is of particular importance since it allows to address the puzzling pair excess measured by the former DLS experiment at 1.04 AGeV. The thesis consists of five chapters. The first chapter presents the physics case which is addressed in the work. In the second chapter the HADES spectrometer is introduced with the characteristic of specific detectors which are part of the spectrometer. Chapter three focusses on the issue of charged-particle identification. The fourth chapter discusses the reconstruction of the di-electron spectra in C+C collisions. In this part of the thesis a comparison with theoretical models is included as well. The conclusion and final remarks are given in chapter five.

An investigation of the transition to delta matter is performed based on a relativistic mean field formulation of the nonlinear sigma and omega model. We demonstrate that in addition to the Delta-meson coupling, the occurrence of the baryon resonance isomer also depends on the nucleon-meson coupling. Our results show that for the favored phenomenological value of m* and K, the Delta isomer exists at baryon density ~ 2–3 p0 if beta=1.31 is adopted. For universal coupling of the nucleon and Delta, the Delta density at baryon density ~ 2–3 p0 and temperature ~ 0.4–0.5 fm-1 is about normal nuclear matter density, which is in accord with a recent experimental finding.

In the classical Dirac equation with strong potentials, called overcritical, a bound state reaches the negative continuum. In QED the presence of a static overcritical external electric field leads to a charged vacuum and indicates spontaneous particle creation when the overcritical field is switched on. The goal of this work is to clarify whether this effect exists, i.e. if it can be uniquely defined and proved, in time-dependent physical processes. Starting from a fundamental level of the theory we check all mathematical and interpretational steps from the algebra of fields to the very effect. In the first, theoretical part of this thesis we introduce the mathematical formulation of the classical and quantized Dirac theory with their most important results. Using this language we define rigorously the notion of spontaneous particle creation in overcritical fields. First, we give a rigorous definition of resonances as poles of the resolvent or the Green's function and show how eigenvalues become resonances under Hamiltonian perturbations. In particular, we consider essential for overcritical potentials perturbation of eigenvalues at the edge of the continuous spectrum. Next, we gather various adiabatic theorems and discuss well-posedness of the scattering in the adiabatic limit. Then, we construct Fock space representations of the field algebra, study their equivalence and give a unitary implementer of all Bogoliubov transformations induced by unitary transformations of the one-particle Hilbert space as well as by the projector (or vacuum vector) changes as long as they lead to unitarily equivalent Fock representations. We implement in Fock space self-adjoint and unitary operators from the one-particle space, discussing the charge, energy, evolution and scattering operators. Then we introduce the notion of particles and several particle interpretations for time-dependent processes with a different Fock space at every instant of time. We study how the charge, energy and number of particles change in consequence of a change of representation or in implemented evolution or scattering processes, what is especially interesting in presence of overcritical potentials. Using this language we define rigorously the notion of spontaneous particle creation. Then we look for physical processes which show the effect of vacuum decay and spontaneous particle creation exclusively due to the overcriticality of the potential. We consider several processes with static as well as suddenly switched on (and off) static overcritical potentials and conclude that they are unsatisfactory for observation of the spontaneous particle creation. Next, we consider properties of general time-dependent scattering processes with continuous switch on (and off) of an overcritical potential and show that they also fail to produce stable signatures of the particle creation due to overcriticality. Further, we study and successfully define the spontaneous particle creation in adiabatic processes, where the spontaneous antiparticle is created as a result of a resonance (wave packet) decay in the negative continuum. Unfortunately, they lead to physically questionable pair production as the adiabatic limit is approached. Finally, we consider extension of these ideas to non-adiabatic processes involving overcritical potentials and argue that they are the best candidate for showing the spontaneous pair creation in physical processes. Demanding creation of the spontaneous antiparticle in the state corresponding to the overcritical resonance rather quick than slow processes should be considered, with a possibly long frozen overcritical period. In the second part of this thesis we concentrate on a class of spherically symmetric square well potentials with a time-dependent depth. First, we solve the Dirac equation and analyze the structure and behaviour of bound states and appearance of overcriticality. Then, by analytic continuation we find and discuss the behaviour of resonances in overcritical potentials. Next, we derive and solve numerically (introducing a non-uniform continuum discretization for a consistent treatment of narrow peaks) a system of differential equations (coupled channel equations) to calculate particle and antiparticle production spectra for various time-dependent processes including sudden, quick, slow switch on and off of a sub- and overcritical potentials. We discuss in detail how and under which conditions an overcritical resonance decays during the evolution giving rise to the spontaneous production of an antiparticle. We compare the antiparticle production spectrum with the shape of the resonance in the overcritical potential. We study processes, where the overcritical potentials are switched on at different speed and are possibly frozen in the overcritical phase. We prove, in agreement with conclusions of the theoretical part, that the peak (wave packet) in the negative continuum representing a dived bound state partially follows the moving resonance and partially decays at every stage of its evolution. This continuous decay is more intensive in slow processes, while in quick processes the wave packet more precisely follows the resonance. In the adiabatic limit, the whole decay occurs already at the edge of the continuum, resulting in production of antiparticles with vanishing momentum. In contrast, in quick switch on processes with delay in the overcritical phase, the spectrum of the created antiparticles agrees best with the shape of the resonance. Finally, we address the question how much information about the time-dependent potential can be reconstructed from the scattering data, represented by the particle production spectrum. We propose a simple approximation method (master equation) basing on an exponential, decoherent decay of time-dependent resonances for prediction of particle creation spectra and obtain a good agreement with the results of full numerical calculations. Additionally, we discuss various sources of errors introduced by the numerical discretization, find estimations for them and prove convergence of the numerical schemes.

The rapidity dependence of the single- and double- neutron to proton ratios of nucleon emission from isospin-asymmetric but mass-symmetric reactions Zr+Ru and Ru+Zr at energy range 100 ~ 800 A MeV and impact parameter range 0 ~ 8 fm is investigated. The reaction system with isospin-asymmetry and mass-symmetry has the advantage of simultaneously showing up the dependence on the symmetry energy and the degree of the isospin equilibrium. We find that the beam energy- and the impact parameter dependence of the slope parameter of the double neutron to proton ratio (F_D) as function of rapidity are quite sensitive to the density dependence of symmetry energy, especially at energies E_b ~ 400 A MeV and reduced impact parameters around 0.5. Here the symmetry energy effect on the F_D is enhanced, as compared to the single neutron to proton ratio. The degree of the equilibrium with respect to isospin (isospin mixing) in terms of the F_D is addressed and its dependence on the symmetry energy is also discussed.

Net proton and negative hadron spectra for central \PbPb collisions at 158 GeV per nucleon at the CERN SPS were measured and compared to spectra from lighter systems. Net baryon distributions were derived from those of net protons, utilizing model calculations of isospin contributions as well as data and model calculations of strange baryon distributions. Stopping (rapidity shift with respect to the beam) and mean transverse momentum \meanpt of net baryons increase with system size. The rapidity density of negative hadrons scales with the number of participant nucleons for nuclear collisions, whereas their \meanpt is independent of system size. The \meanpt dependence upon particle mass and system size is consistent with larger transverse flow velocity at midrapidity for \PbPb compared to \SS central collisions.

We investigate the sensitivity of several observables to the density dependence of the symmetry potential within the microscopic transport model UrQMD (ultrarelativistic quantum molecular dynamics model). The same systems are used to probe the symmetry potential at both low and high densities. The influence of the symmetry potentials on the yields of pi-, pi+, the pi-/pi+ ratio, the n/p ratio of free nucleons and the t/3He ratio are studied for neutron-rich heavy ion collisions (208Pb+208Pb, 132Sn+124Sn, 96Zr+96Zr) at E_b=0.4A GeV. We find that these multiple probes provides comprehensive information on the density dependence of the symmetry potential.

We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical hadronization approach, we have studied the chemical equilibration of the system as a function of center of mass energy and of the parameters of the source. Additionally, we have tested and compared different versions of the statistical model, with special emphasis on possible explanations of the observed strangeness hadronic phase space under-saturation.

We investigate transverse hadron spectra from relativistic nucleus-nucleus collisions which reflect important aspects of the dynamics - such as the generation of pressure - in the hot and dense zone formed in the early phase of the reaction. Our analysis is performed within two independent transport approaches (HSD and UrQMD) that are based on quark, diquark, string and hadronic degrees of freedom. Both transport models show their reliability for elementary pp as well as light-ion (C+C, Si+Si) reactions. However, for central Au+Au (Pb+Pb) collisions at bombarding energies above ~ 5 A.GeV the measured K+- transverse mass spectra have a larger inverse slope parameter than expected from the calculation. Thus the pressure generated by hadronic interactions in the transport models above ~ 5 A.GeV is lower than observed in the experimental data. This finding shows that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential and temperature - is generated by strong partonic interactions in the early phase of central Au+Au (Pb+Pb) collisions.