### Refine

#### Year of publication

#### Document Type

- Article (445)
- Preprint (366)
- Doctoral Thesis (352)
- Diplom Thesis (124)
- Conference Proceeding (109)
- Bachelor Thesis (47)
- Master's Thesis (31)
- Other (19)
- Working Paper (16)
- Periodical Parts (14)

#### Keywords

- Kollisionen schwerer Ionen (29)
- heavy ion collisions (23)
- Kollisionen schwerer Ionen (18)
- heavy ion collisions (18)
- Quark-Gluon-Plasma (17)
- quark-gluon plasma (12)
- Quark Gluon Plasma (9)
- equation of state (9)
- quark gluon plasma (9)
- Hadron (8)

#### Institute

- Physik (1544) (remove)

- Ab-initio simulations of pressure effects on structural and electronic properties of iron based superconductors (2014)
- The ab-initio molecular dynamics framework has been the cornerstone of computational solid state physics in the last few decades. Although it is already a mature field it is still rapidly developing to accommodate the growth in solid state research as well as to efficiently utilize the increase in computing power. Starting from the first principles, the ab-initio molecular dynamics provides essential information about structural and electronic properties of matter under various external conditions. In this thesis we use the ab-initio molecular dynamics to study the behavior of BaFe2As2 and CaFe2As2 under the application of external pressure. BaFe2As2 and CaFe2As2 belong to the family of iron based superconductors which are a novel and promising superconducting materials. The application of pressure is one of two key methods by which electronic and structural properties of iron based superconductors can be modified, the other one being doping (or chemical pressure). In particular, it has been noted that pressure conditions have an important effect, but their exact role is not fully understood. To better understand the effect of different pressure conditions we have performed a series of ab-initio simulations of pressure application. In order to apply the pressure with arbitrary stress tensor we have developed a method based on the Fast Inertial Relaxation Engine, whereby the unit cell and the atomic positions are evolved according to the metadynamical equations of motion. We have found that the application of hydrostatic and c axis uniaxial pressure induces a phase transition from the magnetically ordered orthorhombic phase to the non-magnetic collapsed tetragonal phase in both BaFe2As2 and CaFe2As2. In the case of BaFe2As2, an intermediate tetragonal non-magnetic tetragonal phase is observed in addition. Application of the uniaxial pressure parallel to the c axis reduces the critical pressure of the phase transition by an order of magnitude, in agreement with the experimental findings. The in-plane pressure application did not result in transition to the non-magnetic tetragonal phase and instead, rotation of the magnetic order direction could be observed. This is discussed in the context of Ginzburg-Landau theory. We have also found that the magnetostructural phase transition is accompanied by a change in the Fermi surface topology, whereby the hole cylinders centered around the Gamma point disappear, restricting the possible Cooper pair scattering channels in the tetragonal phase. Our calculations also permit us to estimate the bulk moduli and the orthorhombic elastic constants of BaFe2As2 and CaFe2As2. To study the electronic structure in systems with broken translational symmetry, such as doped iron based superconductors, it is necessary to develop a method to unfold the complicated bandstructures arising from the supercell calculations. In this thesis we present the unfolding method based on group theoretical techniques. We achieve the unfolding by employing induced irreducible representations of space groups. The unique feature of our method is that it treats the point group operations on an equal footing with the translations. This permits us to unfold the bandstructures beyond the limit of translation symmetry and also formulate the tight-binding models of reduced dimensionality if certain conditions are met. Inclusion of point group operations in the unfolding formalism allows us to reach important conclusions about the two versus one iron picture in iron based superconductors. And finally, we present the results of ab-initio structure prediction in the cases of giant volume collapse in MnS2 and alkaline doped picene. In the case of MnS2, a previously unobserved high pressure arsenopyrite structure of MnS2 is predicted and stability regions for the two competing metastable phases under pressure are determined. In the case of alkaline doped picene, crystal structures with different levels of doping were predicted and used to study the role of electronic correlations.

- Aspects of electron correlations in two-dimensional metals (2015)
- Landau's Fermi liquid theory has been the main tool for investigating interactions between fermions at low energies for more than 50 years. It has been successful in describing, amongst other things, the mass enhancement in ³He and the thermodynamics of a large class of metals. Whilst this in itself is remarkable given the phenomenological nature of the original theory, experiments have found several materials, such as some superconducting and heavy-fermion materials, which cannot be described within the Fermi liquid picture. Because of this, many attempts have been made to understand these ''non Fermi liquid'' phases from a theoretical perspective. This will be the broad topic of the first part of this thesis and will be investigated in Chapter 2, where we consider a two-dimensional system of electrons interacting close to a Fermi surface through a damped gapless bosonic field. Such systems are known to give rise to non Fermi liquid behaviour. In particular we will consider the Ising-nematic quantum critical point of a two-dimensional metal. At this quantum critical point the Fermi liquid theory breaks down and the fermionic self-energy acquires the non Fermi liquid like {omega}²/³ frequency dependence at lowest order and within the canonical Hertz-Millis approach to quantum criticality of interacting fermions. Previous studies have however shown that, due to the gapless nature of the electronic single-particle excitations, the exponent of 2/3 is modified by an anomalous dimension {eta_psi} which changes, not only the exponent of the frequency dependence, but also the exponent of the momentum dependence of the self-energy. These studies also show that the usual 1/N-expansion breaks down for this problem. We therefore develop an alternative approach to calculate the anomalous dimensions based on the functional renormalization group, which will be introduced in the introductory Chapter 1. Doing so we will be able to calculate both the anomalous dimension renormalizing the exponent of the frequency dependence and the exponent renormalizing the momentum dependence of the self-energy. Moreover we will see that an effective interaction between the bosonic fields, mediated by the fermions, is crucial in order to obtain these renormalizations. In the second part of this thesis, presented in Chapter 3, we return to Fermi liquid theory itself. Indeed, despite its conceptual simplicity of expressing interacting electrons through long-lived quasi-particles which behave in a similar fashion as free particles, albeit with renormalized parameters, it remains an active area of research. In particular, in order to take into account the full effects of interactions between quasi-particles, it is crucial to consider specific microscopic models. One such effect, which is not captured by the phenomenological theory itself, is the appearance of non-analytic terms in the expansions of various thermodynamic quantities such as heat-capacity and susceptibility with respect to an external magnetic field, temperature, or momentum. Such non-analyticities may have a large impact on the phase diagram of, for example, itinerant electrons near a ferromagnetic quantum phase transition. Inspired by this we consider a system of interacting electrons in a weak external magnetic field within Fermi liquid theory. For this system we calculate various quasi-particle properties such as the quasi-particle residue, momentum-renormalization factor, and a renormalization factor which relates to the self-energy on the Fermi surface. From these renormalization factors we then extract physical quantities such as the renormalized mass and renormalized electron Lande g-factor. By calculating the renormalization factors within second order perturbation theory numerically and analytically, using a phase-space decomposition, we show that all renormalization factors acquire a non-analytic term proportional to the absolute value of the magnetic field. We moreover explicitly calculate the prefactors of these terms and find that they are all universal and determined by low-energy scattering processes which we classify. We also consider the non-analytic contributions to the same renormalization factors at finite temperatures and for finite external frequencies and discuss possible experimental ways of measuring the prefactors. Specifically we find that the tunnelling density of states and the conductivity acquire a non-analytic dependence on magnetic field (and temperature) coming from the momentum-renormalization factor. For the latter we discuss how this relates to previous works which show the existence of non-analyticities in the conductivity at first order in the interaction.

- From microscopic interactions to the dynamics of the fireball (2014)
- We discuss recent applications of the partonic perturbative QCD based cascade model BAMPS with focus on heavy-ion phenomenology in the hard and soft momentum range. First, the elliptic flow and suppression of charm and bottom quarks are studied at LHC energies. Thereafter, we compare in a detailed study the standard Gunion-Bertsch approximation of the matrix elements for inelastic processes to the exact results in leading order perturbative QCD. Since a disagreement is found, we propose an improved Gunion-Bertsch matrix element, which agrees with the exact result in all phase space regions.

- Emissivity and conductivity of parton-hadron matter (2014)
- We investigate the properties of the QCD matter across the deconfinement phase transition. In the scope of the parton-hadron string dynamics (PHSD) transport approach, we study the strongly interacting matter in equilibrium as well as the out-of equilibrium dynamics of relativistic heavy-ion collisions. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions and the relevant correlator in equilibrium, i.e. the electric conductivity. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow ν2 of direct photons.

- Fusion using time-dependent density-constrained DFT (2014)
- We present results for calculating fusion cross-sections using a new microscopic approach based on a time-dependent density-constrained DFT calculations. The theory is implemented by using densities and other information obtained from TDDFT time-evolution of the nuclear system as a constraint on the density for DFT calculations.

- Decays of open charmed mesons in the extended Linear Sigma Model (2014)
- We enlarge the so-called extended linear Sigma model (eLSM) by including the charm quark according to the global U(4)r × U(4)l chiral symmetry. In the eLSM, besides scalar and pseudoscalar mesons, also vector and axial-vector mesons are present. Almost all the parameters of the model were fixed in a previous study of mesons below 2 GeV. In the extension to the four-flavor case, only three additional parameters (all of them related to the bare mass of the charm quark) appear.We compute the (OZI dominant) strong decays of open charmed mesons. The results are compatible with the experimental data, although the theoretical uncertainties are still large.

- The final stage of gravitationally collapsed thick matter layers (2013)
- In the presence of a minimal length, physical objects cannot collapse to an infinite density, singular, matter point. In this paper, we consider the possible final stage of the gravitational collapse of “thick” matter layers. The energy momentum tensor we choose to model these shell-like objects is a proper modification of the source for “noncommutative geometry inspired,” regular black holes. By using higher momenta of Gaussian distribution to localize matter at finite distance from the origin, we obtain new solutions of the Einstein equation which smoothly interpolates between Minkowski’s geometry near the center of the shell and Schwarzschild’s spacetime far away from the matter layer. The metric is curvature singularity free. Black hole type solutions exist only for “heavy” shells; that is, M >= Mρ, where Mρ is the mass of the extremal configuration. We determine the Hawking temperature and a modified area law taking into account the extended nature of the source.

- Synthesis of superheavy nuclei: obstacles and opportunities (2015)
- There are only 3 methods for the production of heavy and superheavy (SH) nuclei, namely, fusion reactions, a sequence of neutron capture and beta(-) decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Z<120 put obstacles in synthesis of new elements. At the same time, an important area of SH isotopes located between those produced in the cold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+) decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.

- On unitary evolution and collapse in quantum mechanics (2014)
- In the framework of an interference setup in which only two outcomes are possible (such as in the case of a Mach–Zehnder interferometer), we discuss in a simple and pedagogical way the difference between a standard, unitary quantum mechanical evolution and the existence of a real collapse of the wavefunction. This is a central and not-yet resolved question of quantum mechanics and indeed of quantum field theory as well. Moreover, we also present the Elitzur–Vaidman bomb, the delayed choice experiment, and the effect of decoherence. In the end, we propose two simple experiments to visualize decoherence and to test the role of an entangled particle.

- Diagnostic scheme for the HITRAP decelerator (2011)
- The HITRAP linear decelerator currently being set up at GSI will provide slow, few keV/u highly charged ions for atomic physics experiments. The expected beam intensity is up to 105 ions per shot. To optimize phase and amplitude of the RF systems intensity, bunch length and kinetic energy of the particles need to be monitored. The bunch length that we need to fit is about 2 ns, which is typically measured by capacitive pickups. However, they do not work for the low beam intensities that we face. We investigated the bunch length with a fast CVD diamond detector working in single particle counting mode. Averaging over 8 shots yields a clear, regular picture of the bunched beam. Energy measurements by capacitive pickups are limited by the presence of intense primary and partially decelerated beam and hence make tuning of the IH-structure impossible. The energy of the decelerated fraction of the beam behind the first deceleration cavity was determined to about 10 % accuracy with a permanent dipole magnet combined with a MCP. Better detector calibration should help reaching the required 1%. Design of the detectors as well as the results of the measurements will be presented.