### Refine

#### Year of publication

#### Document Type

- Preprint (466) (remove)

#### Keywords

- Kollisionen schwerer Ionen (22)
- heavy ion collisions (14)
- heavy ion collisions (13)
- Kollisionen schwerer Ionen (11)
- Quark Gluon Plasma (8)
- Quark-Gluon-Plasma (8)
- equation of state (8)
- QGP (7)
- quark gluon plasma (7)
- quark-gluon plasma (7)

#### Institute

- Physik (364)
- Frankfurt Institute for Advanced Studies (FIAS) (48)
- Extern (7)
- Wirtschaftswissenschaften (7)
- Informatik (5)
- Mathematik (5)
- Rechtswissenschaft (4)
- Medizin (2)
- Zentrum für Nordamerika-Forschung (ZENAF) (1)
- Gesellschaftswissenschaften (1)

- Particle correlations at RHIC - scrutiny of a puzzle (2002)
- We present calculations of two-pion and two-kaon correlation functions in relativistic heavy ion collisions from a relativistic transport model that includes explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron gas. We compare the obtained correlation radii with recent data from RHIC. The predicted R_side radii agree with data while the R_out and R_long radii are overestimated. We also address the impact of in-medium modifications, for example, a broadening of the rho-meson, on the correlation radii. In particular, the longitudinal correlation radius R_long is reduced, improving the comparison to data.

- Kaon interferometry : a sensitive probe of the QCD equation of state? (2002)
- We calculate the kaon HBT radius parameters for high energy heavy ion collisions, assuming a first order phase transition from a thermalized Quark-Gluon-Plasma to a gas of hadrons. At high transverse momenta K_T ~ 1 GeV/c direct emission from the phase boundary becomes important, the emission duration signal, i.e., the R_out/R_side ratio, and its sensitivity to T_c (and thus to the latent heat of the phase transition) are enlarged. Moreover, the QGP+hadronic rescattering transport model calculations do not yield unusual large radii (R_i<9fm). Finite momentum resolution effects have a strong impact on the extracted HBT parameters (R_i and lambda) as well as on the ratio R_out/R_side.

- Evidence for nonhadronic degrees of freedom in the transverse mass spectra of kaons from relativistic nucleus-nucleus collisions? (2003)
- We investigate transverse hadron spectra from relativistic nucleus-nucleus collisions which reflect important aspects of the dynamics - such as the generation of pressure - in the hot and dense zone formed in the early phase of the reaction. Our analysis is performed within two independent transport approaches (HSD and UrQMD) that are based on quark, diquark, string and hadronic degrees of freedom. Both transport models show their reliability for elementary pp as well as light-ion (C+C, Si+Si) reactions. However, for central Au+Au (Pb+Pb) collisions at bombarding energies above ~ 5 A.GeV the measured K+- transverse mass spectra have a larger inverse slope parameter than expected from the calculation. Thus the pressure generated by hadronic interactions in the transport models above ~ 5 A.GeV is lower than observed in the experimental data. This finding shows that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential and temperature - is generated by strong partonic interactions in the early phase of central Au+Au (Pb+Pb) collisions.

- Effects of strong color fields on baryon dynamics (2002)
- We calculate the antibaryon-to-baryon ratios, anti-p/p, anti-Lambda/Lambda, anti-Xi/Xi, and anti-Omega/Omega for Au+Au collisions at RHIC (sqrt{s}_{NN}=200 GeV). The effects of strong color fields associated with an enhanced strangeness and diquark production probability and with an effective decrease of formation times are investigated. Antibaryon-to-baryon ratios increase with the color field strength. The ratios also increase with the strangeness content |S|. The netbaryon number at midrapidity considerably increases with the color field strength while the netproton number remains roughly the same. This shows that the enhanced baryon transport involves a conversion into the hyperon sector (hyperonization) which can be observed in the (Lambda - anti-Lambda)/(p - anti-p) ratio.

- (Strange) meson interferometry at RHIC (2002)
- We make predictions for the kaon interferometry measurements in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). A first order phase transition from a thermalized Quark-Gluon-Plasma (QGP) to a gas of hadrons is assumed for the transport calculations. The fraction of kaons that are directly emitted from the phase boundary is considerably enhanced at large transverse momenta K T ~ 1 GeV/c. In this kinematic region, the sensitivity of the R out/R side ratio to the QGP-properties is enlarged. Here, the results of the 1-dimensional correlation analysis are presented. The extracted interferometry radii, depending on K-Theta, are not unusually large and are strongly affected by momentum resolution effects.

- The disappearance of flow (1995)
- We investigate the disappearance of collective flow in the reaction plane in heavy-ion collisions within a microscopic model (QMD). A systematic study of the impact parameter dependence is performed for the system Ca+Ca. The balance energy strongly increases with impact parameter. Momentum dependent interactions reduce the balance energies for intermediate impact parameters b ~ 4.5 fm. Dynamical negative flow is not visible in the laboratory frame but does exist in the contact frame for the heavy system Au+Au. For semi-peripheral collisions of Ca+Ca with b ~ 6.5 fm a new two-component flow is discussed. Azimuthal distributions exhibit strong collectiv flow signals, even at the balance energy.

- Strangeness dynamics in relativistic nucleus-nucleus collision (2003)
- We investigate hadron production as well as transverse hadron spectra in nucleus-nucleus collisions from 2 A.GeV to 21.3 A.TeV within two independent transport approaches (UrQMD and HSD) that are based on quark, diquark, string and hadronic degrees of freedom. The comparison to experimental data demonstrates that both approaches agree quite well with each other and with the experimental data on hadron production. The enhancement of pion production in central Au+Au (Pb+Pb) collisions relative to scaled pp collisions (the 'kink') is well described by both approaches without involving any phase transition. However, the maximum in the K+/Pi+ ratio at 20 to 30 A.GeV (the 'horn') is missed by ~ 40%. A comparison to the transverse mass spectra from pp and C+C (or Si+Si) reactions shows the reliability of the transport models for light systems. For central Au+Au (Pb+Pb) collisions at bombarding energies above ~ 5 A.GeV, however, the measured K +/- m-theta-spectra have a larger inverse slope parameter than expected from the calculations. The approximately constant slope of K+/-spectra at SPS (the 'step') is not reproduced either. Thus the pressure generated by hadronic interactions in the transport models above ~ 5 A.GeV is lower than observed in the experimental data. This finding suggests that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential and temperature - might be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions.

- Antiflow of nucleons at the softest point of the EoS (1999)
- Report-no: UFTP-492/1999 Journal-ref: Phys.Rev. C61 (2000) 024909 We investigate flow in semi-peripheral nuclear collisions at AGS and SPS energies within macroscopic as well as microscopic transport models. The hot and dense zone assumes the shape of an ellipsoid which is tilted by an angle Theta with respect to the beam axis. If matter is close to the softest point of the equation of state, this ellipsoid expands predominantly orthogonal to the direction given by Theta. This antiflow component is responsible for the previously predicted reduction of the directed transverse momentum around the softest point of the equation of state.

- Local equilibrium in heavy-ion collisions: microscopic analysis of a central cell versus infinite matter (2000)
- REVTEX, 27 pages incl. 10 figures and 3 tables; Phys. Rev. C (in press) Journal-ref: Phys.Rev. C62 (2000) 064906. We study the local equilibrium in the central V = 125 fm3 cell in heavy-ion collisions at energies from 10.7 A GeV (AGS) to 160 A GeV (SPS) calculated in the microscopic transport model. In the present paper the hadron yields and energy spectra in the cell are compared with those of infinite nuclear matter, as calculated within the same model. The agreement between the spectra in the two systems is established for times t >= 10 fm/c in the central cell. The cell results do not deviate noticeably from the infinite matter calculations with rising incident energy, in contrast to the apparent discrepancy with predictions of the statistical model (SM) of an ideal hadron gas. The entropy of this state is found to be very close to the maximum entropy, while hadron abundances and energy spectra differ significantly from those of the SM.

- Nonequilibrium models of relativistic heavy-ion collisions (2004)
- To be published in J. Phys. G - Proceedings of SQM 2004 : We review the results from the various hydrodynamical and transport models on the collective flow observables from AGS to RHIC energies. A critical discussion of the present status of the CERN experiments on hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A.GeV: here the hydrodynamic model has predicted the collapse of the v2-flow ~ 10 A.GeV; at 40 A.GeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as evidence for a first order phase transition at high baryon density r b. Moreover, the connection of the elliptic flow v2 to jet suppression is examined. It is proven experimentally that the collective flow is not faked by minijet fragmentation. Additionally, detailed transport studies show that the away-side jet suppression can only partially (< 50%) be due to hadronic rescattering. Furthermore, the change in sign of v1, v2 closer to beam rapidity is related to the occurence of a high density first order phase transition in the RHIC data at 62.5, 130 and 200 A.GeV.