Partial symmetries of solutions to nonlinear elliptic and parabolic problems in bounded radial domains

  • We consider a class of nonautonomous nonlinear competitive parabolic systems on bounded radial domains under Neumann or Dirichlet boundary conditions. We show that, if the initial profiles satisfy a reflection inequality with respect to a hyperplane, then bounded positive solutions are asymptotically (in time) foliated Schwarz symmetric with respect to antipodal points. Additionally, a related result for (positive and sign changing solutions) of scalar equations with Neumann or Dirichlet boundary conditions is given. The asymptotic shape of solutions to cooperative systems is also discussed.

Download full text files

Export metadata

Metadaten
Author:Alberto Saldaña de FuentesORCiDGND
URN:urn:nbn:de:hebis:30:3-344219
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Tobias WethORCiDGND, Nils Ackermann
Advisor:Tobias Weth
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2014/07/03
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2014/07/02
Release Date:2014/07/10
Tag:Lotka-Volterra system; cooperative systems; foliated Schwarz symmetry; rotating plane method
Page Number:126
HeBIS-PPN:343114054
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht