Partial symmetries of solutions to nonlinear elliptic and parabolic problems in bounded radial domains
- We consider a class of nonautonomous nonlinear competitive parabolic systems on bounded radial domains under Neumann or Dirichlet boundary conditions. We show that, if the initial profiles satisfy a reflection inequality with respect to a hyperplane, then bounded positive solutions are asymptotically (in time) foliated Schwarz symmetric with respect to antipodal points. Additionally, a related result for (positive and sign changing solutions) of scalar equations with Neumann or Dirichlet boundary conditions is given. The asymptotic shape of solutions to cooperative systems is also discussed.
Author: | Alberto Saldaña de FuentesORCiDGND |
---|---|
URN: | urn:nbn:de:hebis:30:3-344219 |
Publisher: | Univ.-Bibliothek |
Place of publication: | Frankfurt am Main |
Referee: | Tobias WethORCiDGND, Nils Ackermann |
Advisor: | Tobias Weth |
Document Type: | Doctoral Thesis |
Language: | English |
Date of Publication (online): | 2014/07/03 |
Year of first Publication: | 2014 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Granting Institution: | Johann Wolfgang Goethe-Universität |
Date of final exam: | 2014/07/02 |
Release Date: | 2014/07/10 |
Tag: | Lotka-Volterra system; cooperative systems; foliated Schwarz symmetry; rotating plane method |
Page Number: | 126 |
HeBIS-PPN: | 343114054 |
Institutes: | Informatik und Mathematik / Mathematik |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Sammlungen: | Universitätspublikationen |
Licence (German): | Deutsches Urheberrecht |