Smooth valuations on convex functions

  • We study continuous dually epi-translation invariant valuations on certain cones of convex functions containing the space of finite-valued convex functions. Using the homogeneous decomposition of this space, we associate a certain distribution to any homogeneous valuation similar to the Goodey-Weil embedding for translation invariant valuations on convex bodies. The support of these distributions induces a corresponding notion of support for the underlying valuations, which imposes certain restrictions on these functionals, and we study the relation between the support of a valuation and its domain. This gives a partial answer to the question which dually epi-translation invariant valuations on finite-valued convex functions can be extended to larger cones of convex functions. We also study topological properties of spaces of valuations with support contained in a fixed compact set. As an application of these results, we introduce the class of smooth valuations on convex functions and show that the subspace of smooth dually epi-translation invariant valuations is dense in the space of continuous dually epi-translation invariant valuation on finite-valued convex functions. These smooth valuations are given by integrating certain smooth differential forms over the graph of the differential of a convex function. We use this construction to give a characterization of a dense subspace of all continuous valuations on finite-valued convex functions that are rotation invariant as well as dually epi-translation invariant. Using results from Alesker's theory of smooth valuations on convex bodies, we also show that any smooth valuation can be written as a convergent sum of mixed Hessian valuations. In particular, mixed Hessian valuations span a dense subspace, which is a version of McMullen’s conjecture for valuations on convex functions.

Download full text files

Export metadata

Author:Jonas KnörrORCiDGND
Place of publication:Frankfurt am Main
Referee:Andreas BernigORCiDGND, Raman SanyalORCiDGND, Andrea Colesanti
Document Type:Doctoral Thesis
Date of Publication (online):2021/02/03
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/11/12
Release Date:2021/02/15
Tag:Integral Geometry; Valuation Theory; Valuation on functions
Page Number:145
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht