• search hit 23 of 56
Back to Result List

Investigation of the structure and dynamics of RNA systems by molecular dynamics simulations

  • Das genetische Material der Zellen besteht aus Molekülketten der Desoxyribonukleinsäure (DNA), die ein Träger der Erbinformation ist. In normalen Körperzellen wird die Erbinformation der DNA in eine andere Molekülkette, die sogenannte Ribonukleinsäure (RNA), übersetzt. Die RNA reguliert die Bildung von neuem Protein in der Zelle. Dass die RNA nicht bloß ein „Stempel“ ist, der die Informationen der DNA weitervermittelt, darin sind sich die Experten heute einig. RNA-Moleküle können Informationen speichern, katalytische Aktivitäten entfalten, sich perfekt tarnen, und sie regulieren auch als Produkt ihre eigene Synthese. Manche Viren enthalten ebenfalls RNA (oder DNA) und können so den Produktionsapparat der Zelle täuschen. Erkenntnisse über die Wechselwirkung dieser RNA mit natürlichen und synthetischen Liganden können zur Suche nach potentiellen Wirkstoffen beitragen. Nukleinsäuren sind lineare Biopolymere von grundlegenden Untereinheiten, die Nukleotide genannt werden und aus Adenin (A), Cytosin (C), Guanin (G), Urazil (U), und Thymin (T) zusammengesetzt sind. Sie sind jedoch in der Lage sich zu falten und so eine Doppel-Helixstruktur auszubilden. Diese besteht größtenteils aus den bekannten "Watson-Crick-Basenpaaren" (G-C und A-U oder A-T), die zur Stabilität der Struktur beitragen, sowie aus den weniger stabilen G-U-Paaren. Durch die Wechselwirkung zwischen verschiedenen Sekundärstrukturelementen entstehen Tertiärstrukturelemente, deren Struktur und Dynamik oft nur schwer experimentell zu bestimmen sind. Fortschritte in der RNA-Strukturanalyse wurden durch Röntgenkristallographie und Kernresonanzspektroskopie (NMR) möglich. Durch die Röntgenkristallographie wurden viele RNA-Eigenschaften festgestellt. Allerdings besteht keine Kristallstruktur für alle mögliche Einzelnfaser-RNA-Haarnadeln, weil diese immer dazu neigen, in eine linearen doppelte Faserform zu kristallisieren, die geringe biologische Bedeutung hat. Außerdem wurde mit Hilfe der NMR-Spektroskopie das dynamische Verhalten von RNA, z.B. Entfaltungsprozesse bei ansteigender Temperatur, beobachtet. Jedoch erlauben diese experimentellen Daten oft keine direkte mikroskopische Beschreibung der molekularen Prozesse. Molekulardynamik (MD)-Simulationen von biologischen Systemen ermöglichen es hingegen, diese Prozesse in atomischem Detail zu untersuchen. Die MD-Simulation beschreibt ein molekulares System auf atomarer Ebene mit Hilfe der klassischen Mechanik. Kräfte werden von empirischen Potentialen abgeleitet. Sie liefern zeitabhängige Trajektorien, die sich aus den Newton'schen Bewegungsgleichungen ergeben. Durch verbesserte Computerleistung, bessere Kraftfelder, und neu entwickelte genauere Methoden stimmen heutzutage MD-Simulationen von RNA mit experimentellen Daten immer besser überein. In meiner Doktorarbeit wurden MD-Simulationen durchgeführt um die Dynamik, die Struktur und insbesondere die Stabilität von RNA-Hairpins theoretisch zu beschreiben, um so ein erweitertes Verständnis für die dynamischen Vorgänge zu erhalten. Auch der SFB 579 der Universität Frankfurt beschäftigt sich mit RNA-Systemen. Erforscht wird unter anderem der D-Loop des Coxsackievirus B3 (CVB3), der Virenmyocarditis verursacht. Die Interpretation dieser experimentellen Daten wird durch MD-Simulation möglich. In dieser Arbeit wurden das GROMACS Software-Paket und das AMBER Kraftfeld verwendet, um das strukturelle, dynamische und thermische Verhalten der RNA-Hairpins mit Hilfe von MD-Simulationen auf atomarer Ebene zu untersuchen. Betrachtet wurden die 14-mer RNA-Hairpins, uCACGg und cUUCGg. Die verfügbaren NMR-Strukturen zeigen, dass das uCACGg-Tetraloop auffallend ähnlich in der gesamten Geometrie und den Wasserstoffbindungen zu der experimentellen Struktur des cUUCGg-Tetraloop ist, obwohl die schließende Basenpaarsequenz der beiden Tetraloops unterschiedlich sind. Trotz beachtlicher struktureller Ähnlichkeit unterscheiden sich allerdings die uCACGg und cUUCGg Tetraloops in Funktionalität und Thermostabilität. Zunächst orientiert sich unser erstes Bemühen an der Frage nach einem guten Modell für RNA-Hairpins und Simulationsbedingungen, um die zu untersuchenden RNA-Hairpins in Wasser möglichst realitätsnah zu simulieren. Erstens werden drei Versionen des biomolekularen AMBER-Kraftfelds geprüft, indem man die 60 ns Simulationen des 14-mer uCACGg-Hairpins durchführt. Die simulierten strukturellen Eigenschaften und Atomfluktuationen zeigen hohe Ähnlichkeiten in den drei Kraftfeldern. Darüber hinaus stimmen die von MD-Simulationen berechneten Atomkernabstände mit den experimentellen NMR-Daten gut überein. Die gute Übereinstimmung zwischen den Simulationen und den strukturellen NMR Daten belegt die Fähigkeit des AMBER-Kraftfelds zur Beschreibung der strukturellen Eigenschaft von kleinen RNA-Hairpins. Anschließend werden die Einflüsse der Methoden, welche die langreichweitigen, elektrostatischen Wechselwirkungen beschreiben, auf die strukturellen Eigenschaften untersucht. Insbesondere werden die Ergebnisse der Reaktionfeld-Methode mit denen der Particle Mesh Ewald (PME)-Methode verglichen. Es zeigt sich, dass die PME-Methode die elektrostatischen Wechselwirkungen am besten beschreibt, auch wenn die Simulationen der beiden Methoden Ähnlichkeit in der Struktur-Stabilität und der Atomfluktuation bei niedriger Natriumkonzentration aufweisen. Drittens wird der Kationseffekt auf die RNA-Stabilität untersucht. Betrachtet wurden zwei unterschiedliche Kationen (ein- und zweiwertig) und verschiedene Konzentrationen. Die Simulationen weisen darauf hin, dass sich die Metallionen in der Affinität zum RNA-Hairpin unterscheiden, wenn Na+ und/oder Mg2+ als Gegenionen verwendet werden. Weiterhin wird gezeigt, dass sich die bevorzugten Positionen der Na+-Ionen in der großen Furche (major groove) des RNA-Hairpins befinden. Insbesondere die Anlagerungsort der Na+-Ionen liegen in der Nähe des schließenden Basenpaar U5-G10. Im Vergleich zu Na+-Ionen lagern sich Mg2+-Ionen sowohl an die RNA-Basen U3, A4-U11, und die Phosphat-Gruppe, als auch an das schließenden Basenpaar U5-G10 an. Bestätigt werden die Modelle und Simulationsbedingungen durch den Vergleich von Parametern, die sowohl experimentell als auch durch Simulationen ermittelt werden können. Ferner erlauben MD-Simulationen Einblick in das System, indem sie detallierte Konformations- und andere Verteilungen liefern. In der vorliegenden Arbeit wurden die Einflüsse der Loopsequenz und des schließenden Basenpaares auf die Verteilung der Konformationen, der internen Bewegungen, und auf die Thermostabilität von zwei RNA-Hairpins mit Hilfe dieser Modelle untersucht. Zunächst wurden die strukturellen Eigenschaften bei Raumtemperatur ausgewertet. Die starken strukturellen Ähnlichkeiten und die gute Übereinstimmung mit NMR-Daten bestätigen die Hypothese, dass die zwei Tetraloops zur gleichen “erweiterten” RNA-Familie gehören. Diese zwei Hairpins haben ähnliche Lösemittelzugängliche Oberflächen (solvent accessible surface), wobei deren Lösemittel zugänglichen funktionellen Gruppen unterschiedlich sind. Weiterhin weist das uCACGg-Hairpin eine stärkere Tendenz auf Wasserstoffe abzugeben als das cUUCGg-Hairpin, was in den unterschiedlichen Bindungsaffinitäten zwischen diesen Hairpins und der viralen Protease begründet liegt. Darüber hinaus wurde der Faltungs- und Entfaltungsprozess mit Hilfe der Replica-Exchange-Molekulardynamik-Simulationen untersucht. Diese Untersuchung zielt auf das bessere Verständnis der unterschiedlichen Thermostabilität der Hairpins, indem sie die möglichen Zwischenprodukte im atomaren Detail liefern. Sowohl experimentell als auch von den MD-Simulationen ergibt sich eine Differenz in den Schmelztemperaturen der beiden Hairpins von ungefähr 20 K. Allerdings sind die von MD beobachteten Schmelztemperaturen 20 % höher als die von Experiment zu ansehende Wert. Die Ergebnisse machen deutlich, dass die Schmelztemperaturdifferenz nicht auf die Unterschiede in der Sequenz, in der Struktur, oder in der Dynamik der Loops zurückführen sind, sondern auf die Unterschiede der Basenpaaren in den Stämmen. Weiterhin wird gezeigt, dass sich das uCACGg-Hairpin einerseits kooperativ entfaltet, und die Entfaltung des cCACGg-Hairpins anderseits weniger kooperativ stattfindet. Um die schnelle interne Dynamik der uCACGg- und cUUCGg-Hairpins zu untersuchen, erlauben die Simulationen von 50 ns eine akurate Beschreibung der schnellen internen Bewegung der RNA-Hairpin, obwohl der den Hairpins zugängliche Konformationsraum nicht vollständig abgedeckt wird. Die NMR-Relaxationsparameter, die mit Hilfe der MD-Simulationen zurückgerechnet wurden, bestätigen das Modell und die Simulationsbedingungen der MD-Simulationen. Im Hinblick auf die Übereinstimmung kann man den besten Ansatz zur Berechnung der NMR-Ordnungsparameter bestimmen. In dieser Arbeit wurden drei verschiedene Ansätze angewandt, nämlich das Fitting von 100 ps auf modellfreiem Ansatz nach Lipari-Szabo, equilibrium average, und das Gaussian Axial Fluctuation (GAF)-Modell. Die zwei letzteren können nur qualitativ mit den experimentellen Daten übereinstimmen. Die NMR-Ordnungsparameter können mit Hilfe des Modells von Lipari-Szabo richtig ermittelt werden, wenn sich die interne Bewegung in kleineren Zeitskalen als zur Gesamtbewegung vollzieht. Vorausetzung für die Berechnung dieses Modells ist aber, dass das Fitting der internen Korrelationsfunktionen nur auf den ersten Teil von 100 ps der Korrelationsfunktionen eingesetzt wird. Die berechneten Ordnungsparameter deuten auf ein unterschiedliches Verhalten der beiden Hairpins besonders im Loop-Bereich hin. Die konformationelle Umordnung, die beim UUCG-Loop beobachtet wurde, tritt beim CACG-Loop nicht ein. Zusammenfassend lässt sich sagen, dass es durch den Einsatz von MD Simulationen ermöglicht wird, die strukturellen und dynamischen Eigenschaften der RNA-Systeme auf atomarer Ebene zu untersuchen. Als Schlussfolgerung zeigt diese Doktorarbeit, dass sich die Studie der konformationell Dynamik der RNA-Systeme durch die Kombination aus MD-Simulation und NMR-Spektroskopie sowie der Leistungsfähigkeit der MD-Simulationen, die die interne Bewegungen deutlich beschreiben können, untersuchen lässt.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Elisabeth Catherina Widjajakusuma
URN:urn:nbn:de:hebis:30-48798
Referee:Gerhard StockORCiDGND, Harald SchwalbeORCiDGND
Advisor:Gerhard Stock
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2007/09/28
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2007/09/12
Release Date:2007/09/28
Page Number:156
First Page:1
Last Page:144
HeBIS-PPN:190703776
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht