• search hit 9 of 3606
Back to Result List

Aufklärung komplexer lichtgesteuerter Mechanismen photosensitiver Moleküle

  • Die Verwendung von Photoschaltern zur gezielten Kontrolle von Systemen birgt ein hohes Potential hinsichtlich biologischer Fragestellungen, bis hin zu optoelektronischen Anwendungen. Infolge einer Photoanregung kommt es zu Geometrieänderungen, die einen erheblichen Einfluss auf ihr photophysikalisches Verhalten haben. Die Änderungen der photochemischen, wie photophysikalischen Eigenschaften, beruht entweder auf der Isomerisierung von Doppelbindungen oder auf perizyklischen Reaktionen. Durch sorgfältige Modifikationen, wie beispielsweise die Änderung der Konjugation durch unterschiedlich große π-Elektronensysteme, der Molekülgeometrie oder der Veränderung des Dipolmoments, lassen sich intrinsische Funktionen variieren. Die Kombination dieser Eigenschaften stellt eine komplexe Herausforderung dar, da diese Änderungen einen direkten Einfluss auf wichtige Charakteristika wie die Adressierbarkeit, die Effizienz und die Stabilität der Moleküle haben. Darüber hinaus spielt die thermische Stabilität eine erhebliche Rolle im Hinblick auf die Speicherung von Energie oder Informationen für Anwendungsbereiche in der Energiegewinnung und Datenverarbeitung. Für die Anwendung solcher photochromen Moleküle ist hinsichtlich der oben genannten Eigenschaften auch das Wissen über den photoinduzierten Reaktionsmechanismus unabdingbar. Im Rahmen dieser Arbeit wurde der Einfluss auf die Isomerisierungsdynamik organischer Photoschalter durch unterschiedliche Modifikationen mittels stationärer und zeitaufgelöster Spektroskopie untersucht. Im Bereich der Merocyanine konnte ein Derivat vorgestellt werden, das ausschließlich zwischen zwei MC-Formen (trans/cis) isomerisiert. Die interne Methylierung am Phenolatsauerstoff der Chromeneinheit verhindert die Ringschlussreaktion zum SP und somit seinen zwitterionischen Charakter. Die stabilen Grundzustandsisomere TTT und CCT weisen durch den Methylsubstituenten eine hypsochrome Verschiebung ihrer Absorptionsmaxima auf, während TTT das thermodynamisch stabilste Isomer darstellt. Das MeMC wies eine erstaunlich hohe Effizienz seiner Schaltamplituden, insbesondere der TTT → CCT Photoisomerisierung auf, sowie eine überaus hohe Quantenausbeute. Das MeMC wies zudem eine signifikante Lösungsmittelabhängigkeit auf, die sich insbesondere in der Photostabilität bemerkbar macht. Während das MeMC in MeCN und EtOH photodegradiert, konnte in EtOH/H2O eine konstante Reliabilität festgestellt werden. Diese Zuverlässigkeit impliziert nicht nur eine Stabilisierung durch das Wasser, sondern auch eine Resistenz gegenüber Hydrolysereaktionen. Darüber hinaus konnten kinetische Studien eine hohe thermische Rückkonversion von CCT zu TTT bei Raumtemperatur nachweisen, womit auf schädliche UV-Bestrahlung verzichtet werden könnte. Die Untersuchung der Kurzzeitdynamiken beider Grundzustandsisomere gab Aufschluss über die Beteiligung anderer möglicher MC-Intermediate und den Einfluss der Methylgruppe auf das System. Mittels quantenchemischer Berechnungen konnte eine erste Initiierung um die zentrale Doppelbindung beider Isomere bestimmt werden, die jeweils zu einem heißen Grundzustandsintermediat führt, bis nach einer zweiten Isomerisierung der endgültige Grundzustand der Photoprodukte populiert wird. Dies bedeutet, dass die trans/cis-Isomerisierung über TTT-TCT-CCT und die Rückkonversion über CCT-CTT-TTT erfolgt. Im Bereich der Hydrazon-Photoschalter konnten unterschiedlich substituierte Derivate mittels statischer und zeitaufgelösten UV/Vis-Studien untersucht werden. Da ESIPT Prozesse eine wichtige Funktion bei der Kontrolle von biologischen Systemen spielen, wurden verschiedene Hydrazonderivate hinsichtlich ihrer Reaktionsmechanismen untersucht. Als Rotoreinheit diente zum einen eine Benzothiazolkomponente, die die interne H-Bindung des angeregten Z-Hydrazons schwächen sollte und zum anderen wurde ein Chinolinsubstituent eingesetzt, der als Elektronenakzeptor diente und den H-Transfer begünstigt. Der Einsatz der Benzothiazolkomponente bewirkte die gewünschte Vergrößerung der bathochromen Verschiebung des E-Isomers, sowie eine deutliche Erhöhung der thermischen Stabilität des metastabilen Zustands. Dies bestätigten die zeitaufgelösten Studien der Z zu E Isomerisierung, bei denen die Isomere im Vergleich zum Chinolinhydrazonderivat, in beiden ausgewählten Lösungsmitteln metastabile Z-Intermediate zeigten und eine Lebenszeit bis in den µs-Zeitbereich aufwiesen. Die Rückreaktion beider Derivate (HCN) und (HBN) hingegen zeigte eine barrierelose Umwandlung in die beteiligten Photoprodukte. Trotz der Verwendung des Chinolinsubstituenten zusammen mit Naphthalin als Rotoreinheit (HCN), konnte kein ESIPT Prozess beobachtet werden. HCB mit einer Kombination aus einem Chinolinrotor und eines Benzothiazolsubstituenten, wies eine Hydrazon-Azobenzol-Tautomerie auf, die ein prototropes Gleichgewicht zwischen dem E-Hydrazon und der E-Azobenzolform (E-AB) ausbildete. Die Reaktionsdynamiken des Z-Hydrazons zum E-AB wiesen eine ultraschnelle Bildung des Photoproduktes auf, während die Rückreaktion über einen ESIPT im sub-ps-Bereich erfolgte. Dieser H-Transfer hat die Bildung des angeregten E-Hydrazons zur Folge. Interessanterweise wurde kein Rückprotonentransfer nachgewiesen, sondern die mögliche Formation eines Z-AB gefunden. Damit unterscheidet sich dieser Reaktionsmechanismus erheblich von den typischen ESIPT Prozessen, die normalerweise zu ihrem Ausgangsmolekül zurückrelaxieren. Des Weiteren konnte ein Pyridinoxid und Benzoylpyridin-substituiertes Hydrazon charakterisiert werden, bei denen die stationären Studien kein Schaltverhalten, sondern Photodegradation aufwiesen. Die zeitaufgelösten Daten ergaben ebenfalls keine Photoproduktbildung, was die These der Photozersetzung unterstützt. Die Verwendung von zusätzlich substituierten Rotoreinheiten, wie beispielsweise Pyridinoxid und Benzoylpyridin, die aufgrund fehlender Protonenakzeptormöglichkeit keine interne H-Bindung ausbilden, erlaubt keine Bildung des Z-Hydrazon Isomers.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nadine BlaiseGND
URN:urn:nbn:de:hebis:30:3-857442
DOI:https://doi.org/10.21248/gups.85744
Place of publication:Frankfurt am Main
Referee:Josef WachtveitlORCiDGND, Nina MorgnerORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2024/06/05
Year of first Publication:2024
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2024/05/23
Release Date:2024/06/05
Page Number:130
HeBIS-PPN:518842126
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht