• search hit 4 of 6
Back to Result List

Structural dynamics of eukaryotic H/ACA RNPs from saccharomyces cerevisiae & structural dynamics of the Guanidine-II riboswitch from escherichia coli

  • Die vorliegende Dissertation mit dem Titel “Structural dynamics of eukaryotic H/ACA RNPs from Saccharomyces cerevisiae & Structural dynamics of the Guanidine-II riboswitch from Escherichia coli” besteht aus zwei Projekten. Das erste Projekt befasst sich mit den eukaryotischen H/ACA Ribonukleoproteinen (RNP) aus der Hefe. Diese können sequenzspezifisch in der RNA ein Uridin Nukleotid in das Rotationsisomer Pseudouridin (Ψ) umwandeln. Die H/ACA RNPs bestehen aus einer Leit-RNA und vier Proteinen, der katalytisch aktiven Pseudouridylase Cbf5, Nhp2, Gar1 und Nop10. Die Leit-RNA besteht in Eukaryoten konserviert aus zwei Haarnadelstrukturen, die von einem H-Box oder ACA-Box Sequenzmotiv gefolgt sind. In jeder dieser Haarnadeln befindet sich ein ungepaarter Bereich, die sogenannte Pseudouridylierungstasche, wo durch komplementäre Basenpaarung die Ziel-RNA gebunden wird. Fehlerhafte H/ACA RNPs können beim Menschen zu schweren Krankheiten wie verschiedenen Krebsarten oder dem Knochenmarksversagen Dyskeratosis congenita führen, aber sie bieten auch Möglichkeiten zum Einsatz als Therapiemethode. In dieser Arbeit wurde hauptsächlich der zweiteilige Aufbau der H/ACA RNPs untersucht. Dafür wurden zunächst die einzelnen Komponenten hergestellt werden. Cbf5, Nop10 und Gar1 wurden zusammen heterolog in E. coli exprimiert und gereinigt. Außerdem wurden mehrere Deletionsvarianten von Gar1 hergestellt. Zusätzlich wurde die Leit-RNA unmarkiert über T7 Transkription synthetisiert, sowie sechs verschiedene FRET-Konstrukte mit verschiedenen Markierungschemas der Fluorophore Cy3 und Cy5 über DNA-geschiente Ligation. Anschließend wurde über Größenausschlusschromatographie und radioaktiven Aktivitätsassays geprüft, dass sich die aktiven H/ACA RNPs in vitro aus den einzelnen Komponenten rekonstituieren lassen. In smFRET Experimenten wurden einzelne Haarnadelstrukturen mit dem zweiteiligen Komplexen verglichen. Dabei konnte gezeigt werden, dass die H3 Haarnadel durch die Anwesenheit von H5 dynamischer und heterogener wurde, während H5 überwiegend unbeeinflusst war. Außerdem konnte die dreidimensionale Orientierung der Haarnadelstrukturen in verschiedenen Assemblierungsschritten mittels smFRET untersucht werden. Hier deutete sich an, dass in Abwesenheit von Proteinen beide Haarnadeln eher entgegengesetzt stehen als in einer parallelen Konformation. Cbf5 scheint den Linker zwischen den Beiden auszustrecken bzw. zu orientieren und die Haarnadelstrukturen etwas gegeneinander zu neigen. Ein Zusammenspiel von Nhp2 und Gar1 war nötig um die oberen Bereiche der Haarnadeln zusammenzuziehen. Es konnte auch ein Modell für den vollen H/ACA RNP vorgeschlagen werden. Im kompletten Komplex könnte das Zusammenziehen der Haarnadelstrukturen durch Nhp2 und Gar1 mit dem Effekt von Cbf5 konkurrieren und könnte hauptsächlich den oberen Bereich von H3 betreffen. Zum Schluss wurde das Zusammenspiel von Gar1 und Nhp2 auf eine Abhängigkeit von den RGG Domänen von Gar1 hin untersucht. Hier besteht möglicherweise eine Hierarchie, die eine Kooperativität von den N- und C-terminalen Domänen benötigt. Das zweite Projekt befasst sich mit dem Guanidin-II Riboschalter aus E. coli. Der Riboschalter kann das toxische Molekül Guanidinium (Gdm+) spezifisch in seiner Aptamerdomäne binden und dadurch die Genexpression von Proteinen zur Detoxifizierung von Gdm+ aktivieren. Der Riboschalter besteht aus zwei Haarnadelstrukturen, mit einer Schleife, die aus der Sequenz ACGR besteht, wobei R ein Purin ist. In einem vorgeschlagenen Modell soll die Ribosomenbindestelle (Shine-Dalgarno Sequenz) in Abwesenheit von Ligand mit dem Linker komplementär Basenpaaren und so die Translation verhindern. Mit Ligand würde sich dann eine Schleifen-Schleifen Interaktion mit den beiden CG Basen ausbilden, wodurch die Anti-Shine-Dalgarno Sequenz nicht mehr zugänglich wäre. Bisherige Studien arbeiteten zumeist nur mit der Aptamerdomäne, den einzelnen Haarnadeln oder noch kleineren Elementen. In dieser Arbeit wurden die Strukturdynamiken von verschiedenen Längen, auch mit der Expressionsplatform, untersucht. Außerdem wurden verschiedene Mutationen analysiert und die Effekte auf den Riboschalter in seiner natürlichen Umgebung in E. coli. Zunächst mussten insgesamt 24 FRET-Konstrukte hergestellt werden, die sich in Länge, Markierungsschema und Mutationen unterschieden. Hierfür wurde DNA-geschiente Ligation verwendet. Dank der verschiedenen Fluorophorpositionen konnte ein konformationelles Modell für die Aptamerdomäne vorgeschlagen werden. In diesem Modell könnte in Abwesenheit von Ionen das Aptamer offen vorliegen. Durch Mg2+ würde sich bereits eine lockere Schleifen-Schleifen Interaktion ausbilden. Zusätzlich deuten die Ergebnisse auf eine neue Konformation hin, der stabilisierten Schleifen-Schleifen Interaktion, bei der der Linker zusätzlich mit den Haarnadelstrukturen interagiert, beispielswese mit den Purinen an der vierten Schleifenposition...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christin FuksGND
URN:urn:nbn:de:hebis:30:3-747708
DOI:https://doi.org/10.21248/gups.74770
Place of publication:Frankfurt am Main
Referee:Martin HengesbachORCiDGND, Harald SchwalbeORCiDGND
Advisor:Martin Hengesbach
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2023/07/26
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2023/06/30
Release Date:2023/07/26
Page Number:189
HeBIS-PPN:509923836
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht