• search hit 3 of 16
Back to Result List

Neutroneneinfang an Krypton im astrophysikalischen s-Prozess

  • Für das bessere Verständnis der Nukleosynthese der schweren Elemente im s-Prozess wurde im Rahmen dieser Arbeit die Messung zur Bestimmung der Neutroneneinfangsreaktion von 83Kr durchgeführt. Als Messinstrument wurde DANCE am LANL verwendet, ein 4pi-Kalorimeter zur Detektion der entstehenden g-Kaskaden bei (n,g)-Reaktionen. Darüber hinaus wurden außerdem noch Proben mit 85Kr und 86Kr vermessen. Die Herausforderung an diesem Experiment bestand vor allem in der Probenherstellung. Das Edelgas Kr erforderte eine Neukonstruktion der normalerweise bei DANCE verwendeten Probenhalterung. Das Hauptaugenmerk lag auf der Maximierung der Kr-Exposition durch den Neutronenstrahl. Im Gegenzug wurde versucht das umgebende Material nach Möglichkeit keinen Neutronen auszusetzen. Für die Isotope 83,86Kr wurden Hochdruckgaskugeln verwendet, die an der Goethe-Universität Frankfurt gefüllt und in eine der neuen Probenhalterungen eingesetzt wurden. Zur Beachtung des bei der Messung entstehenden Untergrundes wurde eine Messung mit baugleicher Probenhalterung und leerer Gaskugel durchgeführt. Da bereits kleine Mengen 85Kr eine hohe Radioaktivität aufweisen, wurde eine in einen Stahlzylinder eingeschweißte, existierende Quelle verwendet. Bei der Analyse zu 86Kr wurde schnell eine zu starke Verunreinigung der Kr-Probe mit Xe offensichtlich, einen signifikanten Anteil des Spektrums ausmachte. Aus diesem Grund kam es vor allem zu Problemen den korrekten Untergrund von den 86Kr Messdaten zu subtrahieren. Die weitere Bestimmung inklusive Streukorrekturen, Normierung anhand des Flussmonitors und DICEBOX/GEANT3 Effizienzbestimmung lieferte zwar einen energieabhängigen Wirkungsquerschnitt, dieser zeigte allerdings große Abweichungen von den evaluierten ENDF/B-VII.1 Daten, was besonders ersichtlich in der deutlichsten 86Kr Resonanz bei 5515 eV zu erkennen war. Aus diesem Grund konnte aus den Messdaten kein MACS extrahiert werden. Bei einer Untersuchung der Aktivität der 85Kr-Probe mit Hilfe der einzelnen BaF2-Detektoren in der DANCE Kugel zeigte sich zunächst eine um fast einen Faktor vier geringere Aktivität als vom Hersteller angegeben. Auch bei der weiteren Analyse traten massive Untergrundprobleme auf. Die Form des Stahlzylinders, in dem das Kr-Gasgemisch eingeschweißt war, konnte aufgrund seiner Form nur schwer im Strahlrohr untergebracht werden. Beim Experiment selbst zeigte sich dann, dass Teile der Halterung vom Neutronenstrahl getroffen wurden, was einen Untergrund mit sehr hohem Q-Wert erzeugte, der nicht durch ein Esum Fenster entfernt werden konnte. Durch eine Beschädigung der Halterung mit der Probe kam es darüber hinaus zu Abweichungen mit der verwendeten Leerhalterung. All das führte trotz einer langen Messzeit von fast 18 d dazu, dass nur ein sehr schwaches Signal von der eigentlichen Kr-Probe zu erkennen war. Es wurde eine mögliche 85Kr Resonanz bei 675 eV gefunden, allerdings ist die endgültige Zuordnung aufgrund der nicht eindeutigen Untergrundsituation äußerst schwierig. Im Vorfeld des Kr-Experimentes wurde eine Messung von RbCl an DANCE durchgeführt, da ursprünglich zu erwarten war, dass bereits ein Teil des 85Kr zu 85Rb zerfallen war. Durch diese Messung sollte dieser Anteil leicht von der späteren Messung zu subtrahieren sein. Allerdings trat ein unerwartetes Problem während der Datenaufnahme auf. Die Verbindung der DAQ Boards wurde getrennt, wodurch ca. 3/4 der Detektoren nicht mehr zeitsynchron liefen. Im Zuge dieser Arbeit wurde eine Rekonstruktion dieser Daten angestrebt. Durch Modifikationen am FARE Code, der zur Auswertung verwendet wurde, konnte Flugzeitspektren für jeden Beschleunigerpuls erzeugt werden. Es zeigte sich zunächst ein offensichtlicher Trend einer Verschiebung der getrennten Boards zu späteren Zeiten. Durch mehrere Fits an die Abweichungsverteilung und anschließende Korrektur konnte zunächst ein Spektrum wiederhergestellt werden, das vergleichbar mit den unbeschädigten Daten war. Bei einer detaillierten Analyse dieser neu gewonnen Daten zeigte sich jedoch eine Nichtlinearität in der Zeitverschiebung. Dies resultierte letztlich in einer Korrektur des Spektrums, allerdings nicht in einem Koinzidenzfenster von 10 ns, das für eine Wirkungsquerschnittsanalyse notwendig ist. Es wurde geschlussfolgert, dass durch die geringe Statistik in den einzelnen Flugzeitspektren solch eine Genauigkeit nicht zu erreichen ist. Die Messung des Neutroneneinfangsquerschnitts von 83Kr konnte im Zuge dieser Arbeit erfolgreich durchgeführt werden. Es wurden zwei Messungen mit verschiedenen Strömen kombiniert. Eine Messung mit 40 µA wurde durchgeführt, um Pile-Up in der größten Resonanz bei 28 eV zu reduzieren. Die zweite Messung diente dann dem Sammeln von ausreichend Statistik in den nicht resonanten Bereichen. Die eingesetzte Leerkugel erlaubte eine saubere Subtraktion des Untergrundes von Probenhalterung, Gaskugel und Umgebung. Für die Skalierung der Messergebnisse wurde eine weitere Messung mit einer 5000 Å dicken Goldfolie durchgeführt. Zur Bestimmung der Detektoreffizienz konnten zunächst die durch den Neutroneneinfang entstandenen Abregungskaskaden der 84Kr Kerne mit DICEBOX modelliert werden. Diese Kaskaden wurden dann anschließend in GEANT3 Simulationen verwendet, um die Effizienz bestimmen zu können. Mit diesen Methoden erhielt man die Maxwell-gemittelten Wirkungsquerschnitte von kT = 5 keV - 100 keV. Bei der für den s-Prozess wichtigen Temperatur von kT = 30 keV wurde der Querschnitt bestimmt zu: MACS (30 keV) = (256,6 +- 14,2 (stat) +- 18,1(sys)) mb. Dieser Wert ist in guter Übereinstimmung mit dem in der KADoNIS v0.3 Datenbank angegebenen Wert von MACS;KADoNIS (30 keV) = (243 +- 15) mb. Mit den so gewonnenen Wirkungsquerschnitten wurden außerdem die Reaktionsraten berechnet. Bei den anschließenden Netzwerkrechnungen mit dem Programm NETZ wurden die Auswirkungen der in dieser Arbeit gewonnenen Wirkungsquerschnitte im Vergleich zu den KADoNIS v0.3 Werten betrachtet. Dabei zeigte sich eine leicht erhöhte Produktion der stabilen Isotope 84Kr, 86Kr, 85Rb und 87Rb, sowie eine leichte Unterproduktion der stabilen Isotope 86-88Sr in der Hauptkomponente des s-Prozess. Ein ähnliches Bild zeigte sich in der He-Brennphase der schwachen Komponente. Der in dieser Arbeit gemessene Wirkungsquerschnitt bei hohen Temperaturen ist geringer als der in KADoNIS v0.3 angegebene, weswegen es bei der Simulation mit NETZ zu einer stark erhöhten Produktion von 83Kr in der C-Brennphase kommt.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stefan Fiebiger
URN:urn:nbn:de:hebis:30:3-464032
Place of publication:Frankfurt am Main
Referee:René ReifarthORCiD, Uwe Greife
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2018/05/02
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/04/26
Release Date:2018/05/17
Page Number:ii, 113
HeBIS-PPN:43146930X
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht