• search hit 3 of 5
Back to Result List

Substrate translocation in SLC23 and SLC26 transporters

  • Specialized transporter proteins facilitate controlled uptake and extrusion of molecules across biological membranes that would otherwise be impermeable to them. The superfamily of solute carriers (SLC) comprises the second largest group of membrane proteins in humans, acting on a variety of small polar and non-polar molecules and ions. Because of their central role in metabolism, malfunctioning of these proteins often is pathogenic. The interest in SLC transporters as drug targets – as well as for drug delivery – has therefore increased in the past years. For many SLC subfamilies, however, structural and functional information remains scarce to date. The here presented data provides important insights into different aspects of the transport mechanism of the SLC23 and SLC26 protein families. Importantly, we show that SLC23 nucleobase transporters, in contrast to what was been previously reported, work as uniporters rather than as proton-coupled symporters. In order to do so, we developed the first and only in vitro transport assay for the SLC23 family, which enables investigation of protein function in a defined environment. Moreover, we provide a hypothesis on the role of the extremely conserved negative charged substrate binding site residue found not only in the SLC23, but also SLC4 and SLC26 families. Based on a detailed analysis of binding and transport we conclude that this conserved negative charged has a relevance for protein stability rather than for substrate binding, which explains its conservation for all three protein families that otherwise differ in their substrate specificities and modes of transport. Lastly, we investigated the relevance of oligomerization for the SLC23 and SLC26 families, highlighting the importance of the STAS domain for forming active dimers in the SLC26 anion transporter family.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Katharina Elisabeth Augusta HolzhüterORCiDGND
URN:urn:nbn:de:hebis:30:3-658272
DOI:https://doi.org/10.21248/gups.65827
Place of publication:Frankfurt am Main
Referee:Klaas Martinus PosORCiD, Rupert AbeleORCiDGND
Advisor:Eric R. Geertsma
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2022/02/01
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/01/31
Release Date:2022/02/11
Page Number:250
Last Page:242
HeBIS-PPN:490930980
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht