• search hit 7 of 95
Back to Result List

Triaging of mammalian cofactor-free flavoproteins by the protein quality control machinery

  • Protein quality control (PQC) machinery is in charge of ensuring protein homeostasis in the cell, i.e. proteostasis. Chaperones assist polypeptides throughout their maturation until functionality is achieved. This process might be disrupted in the presence of mutations or external damaging agents that affect the folding and stability of proteins. In this case, proteins can be efficiently recognized and targeted for degradation in a controlled manner. Ubiquitylation refers to the covalent attachment of one or more ubiquitin moieties to faulty proteins, thus triggering their degradation by the 26S proteasome. More than 30% of proteins need cofactor molecules. Lack of cofactors renders proteins non-functional. We wanted to understand how the PQC deals with wild-type proteins in the absence of their cofactors. Several studies have indicated the importance of the riboflavin-derived cofactor FAD in the stability of individual flavoproteins, and hence we assumed that loss of flavin should mediate a targeted degradation of this group of proteins. Indeed, our mass spectrometry experiments showed that flavoproteome levels decreased under riboflavin starvation. The oxidoreductase NQO1 was used as a model enzyme to further investigate the mechanism of flavoproteome targeting by the PQC. We showed that cofactor loading determines ubiquitylation of NQO1 by the co-chaperone CHIP, both in vivo and in vitro. Furthermore, subtle changes in the C-terminus of NQO1 in the absence of FAD seemed to be crucial for this recognition event. ApoNQO1 interactome differed from holoNQO1. Chaperones and degradation factors were enriched on NQO1 upon cofactor withdrawal, probably to support maturation and prevent aggregation of the enzyme. Loss of protein folding and stability, even to a small extent, can enhance the aggregating behavior of proteins. Proper loading with FAD reduced the co-aggregation of NQO1 with Aβ1-42 peptide. We assumed that the flavoproteome might represent aggregating-prone species under riboflavin deprivation. Supportingly, reversible apoNQO1 aggregates were observed in vivo in the absence of cofactor. General amyloidogenesis in vivo also increased under these conditions, apparently as a result of flavoproteome destabilization. In this context, we think that our data might have important implications considering the onset and development of conformational diseases. This work has shed some light on the therapeutic implications of riboflavin deficiency as well. The sensitivity of melanoma cells towards the alkylating agent methyl methanesulfonate (MMS) increased under riboflavin starvation. Subsequent analyses indicated that a complex metabolic reorganization, mostly affecting proliferation and energy metabolism, occurs in response to starvation. What we suggest to call “flavoaddiction” can be understood as the dependence of melanoma cells on the flavoproteome structural and functional intactness to survive chemotherapy. Understanding this cellular reprogramming in detail might reveal new possibilities for future therapies.

Download full text files

Export metadata

Metadaten
Author:Adrián Martínez Limón
URN:urn:nbn:de:hebis:30:3-520183
Place of publication:Frankfurt am Main
Referee:Martin Vabulas, Volker DötschORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/12/13
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/10/21
Release Date:2020/01/09
Page Number:185
HeBIS-PPN:457459689
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht