The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 462
Back to Result List

Understanding and conserving the diversity of decomposers in dead-wood with a special emphasis on fungi

  • Anthropogenic interventions have altered all ecosystems around the world. One of those ecosystems are forests, the main resource for timber. They have been strongly transformed in their structure with large consequences on forest biodiversity. Especially the decrease in dead-wood volume due to the timber extraction and alternation of natural forest structures with even-aged stands of less diverse tree species composition has put especially saproxylic, i.e., dead-wood dependent species, under threat, which comprise about 20% of all forest species. Beetles, fungi and bacteria are three functional important groups for decomposition processes but we still lack much information about their sampling and the drivers of their diversity, thus it is difficult to comprehensively protect their diversity. Saproxylic fungi are a highly diverse species group and the main drivers of dead-wood decomposition; hence they play a major role in the global carbon cycle. Due to their cryptic lifestyle, many species are still unknown, but the recent advances in environmental DNA barcoding methods (metabarcoding) shed light on the formerly underestimated diversity. Yet, this method's accuracy and suitability in detecting specific species have not been assessed so far, limiting its current usefulness for species conservation. On the other hand, these methods are a convenient tool to study highly diverse areas with high numbers of unknown species, enabling the study of global diversity and its drivers, which are unknown for saproxylic fungi, but important to assess to predict the future impacts of global change. Since nature conservation concepts are usually not applied on a global scale, the drivers of diversity must also be assessed on smaller scales. Besides understanding the drivers of diversity, to identify focus scales to create comprehensive, evidence-based conservation concepts must utilize multi-taxonomic studies since saproxylic species are differently sensitive towards environmental variables and closely interact with each other. Filling these knowledge gaps is utterly needed to protect the high saproxylic diversity and ensure the functional continuity of decomposition processes, especially regarding the global change. To address the usefulness of metabarcoding for fungal species conservation, I compared the traditional method of fruit body sampling with metabarcoding and their efficiency in detecting threatened fungal species in the first chapter of this thesis. Both methods have advantages and disadvantages. Their ability to detect threatened saproxylic fungal species and their dependencies on detecting specific fungal groups have not been compared, albeit they are important to inform species conservation like Red Lists properly. I found metabarcoding to generally detect more threatened fungal species than fruit body sampling with a higher frequency than fruit body sampling. Moreover, fruit body sampling detected a unique set of species, while fruit body sampling missed large parts of fungal diversity due to species-specific fruiting characteristics. Metabarcoding with high sampling intensity is thus a viable method to assess threatened saproxylic fungal diversity and inform nature conservation like Red Lists about distribution and abundances. Nevertheless, a complementary approach with fruit body sampling is indispensable for assessing all threatened fungal species. In order to analyse the global diversity of saproxylic fungi and its drivers, I examined whether fungal species richness increases from the poles towards the equator and thus follows the latitudinal diversity gradient already found in many other species groups. I further investigated whether such an increase is caused by increasing ecological specialisation, i.e., niche partitioning, or local tree diversity, i.e., niche space. Gamma diversity per biome increased from the boreal, over the temperate to the tropics and thus confirmed the latitudinal diversity for saproxylic fungi. Contrastingly, alpha diversity at the log level did not significantly increase towards the tropics, suggesting a grain size dependency of the observed pattern and an equal niche space within dead-wood across latitudes. Ecological specialisation on the plot level was globally on a high level but did not increase significantly towards the equator. Additionally, I found local tree species richness to drive plot-based fungal diversity. Further analysis of gamma diversity against the total number of sampled tree species strengthened the assumption that tree species diversity and not increased ecological specialisation was the main driver of the latitudinal diversity gradient, as there was no significant difference between the gamma diversity of the temperate and tropical biome. Nonetheless, as the gamma diversity of the boreal biome was still significantly smaller, my results do not allow a complete neglection of the ecological specialisation hypothesis. The overall results indicate a strong dependency of saproxylic fungi diversity with host tree species diversity and that the global loss of tree species threatens saproxylic fungi with an unpredictable impact on carbon and nutrient cycling. To support saproxylic conservation, I conducted two analyses. First, I compared the beta diversity of the three main decomposer groups (beetles, fungal fruit bodies, mycelial fungi (metabarcoding), and bacteria (metabarcoding)) across different scales to assess the impact of different environmental variables on their overall diversity. I used an experimental design to disentangle two different spatial scales, influenced by differences in macroclimate, forest microclimate and spatial distance, and two host scales, driven by differences between tree lineages and tree species. I set these beta diversities in relation to the gamma diversity of the three main decomposer groups to identify whether a unified conservation concept could be applied to one scale to optimally protect the diversity of all three species groups. Second, I identified whether diversity and community composition of fungi and bacteria differed among climate and land use gradients. Further I explored whether specialisation and niche packing could explain the expected pattern. To do so I used an experimental design disentangling climate and land use across a large gradient in Germany. The results differed among the species groups, denying a unified conservation concept focusing on one scale. Saproxylic beetle and fruit body beta diversity was equally high on each scale, as they are more sensitive towards environmental factors like macro- and microclimate. On the other hand, mycelial fungi and bacteria beta diversity was highest on the host scale, especially the host tree scale, indicating a high host specificity of the two groups. The second study also identified tree species as the main driver of diversity and community composition of these two study groups. Specialisation of fungi was not influenced by land use or climate. Bacterial specialisation and diversity were under a strong influence of mean precipitation. Comprehensive conservation of multi-taxonomic diversity across regions thus requires the integration of several scales. Within different macroclimatic regions, forests of varying microclimates, i.e., forest management, must be implemented. In these forests, dead-wood of different tree lineages, i.e., angio- and gymnosperms and tree species, must be provided. Taken together, I could demonstrate that metabarcoding is an efficient method to sample threatened fungal species and identify differing drivers of fungal diversity present as fruit bodies or mycelium. Its usefulness will further increase due to the ongoing improvement of sequencing databases and thus better inform conservation concepts. Using metabarcoding, I could demonstrate that high host specialisation of saproxylic fungi is not a European but a global phenomenon and identify tree species loss under global change as one major concern for saproxylic diversity. My dissertation further highlighted the importance of multi-taxonomic studies for evidence-based nature conservation, as different species groups require varying concepts. These results were especially important for saproxylic bacteria as the drivers of their diversity are still largely unknown. Howbeit, large research gaps still exist regarding the impacts of global change on species and processes. Moreover, the spatial coverage of studies is needed to confirm or neglect the generality of current research especially concerning the highly diverse tropical areas. An increased focus on the drivers of diversity in these areas is crucial to ensure a globally comprehensive saproxylic conservation and the various ecosystem functions they control. 

Download full text files

Export metadata

Metadaten
Author:Daniel RiekerORCiDGND
URN:urn:nbn:de:hebis:30:3-799571
DOI:https://doi.org/10.21248/gups.79957
Place of publication:Frankfurt am Main
Referee:Claus BässlerORCiDGND, Meike PiepenbringORCiDGND
Advisor:Claus Bässler
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2023/12/05
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2023/11/29
Release Date:2023/12/05
Page Number:240
HeBIS-PPN:513682120
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoCreative Commons - CC BY-NC-SA - Namensnennung - Nicht kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International