• search hit 7 of 50
Back to Result List

Enzymatic hydrogen electrosynthesis at enhanced current density using a redox polymer

  • High-temperature tolerant enzymes offer multiple advantages over enzymes from mesophilic organisms for the industrial production of sustainable chemicals due to high specific activities and stabilities towards fluctuations in pH, heat, and organic solvents. The production of molecular hydrogen (H2) is of particular interest because of the multiple uses of hydrogen in energy and chemicals applications, and the ability of hydrogenase enzymes to reduce protons to H2 at a cathode. We examined the activity of Hydrogen-Dependent CO2 Reductase (HDCR) from the thermophilic bacterium Thermoanaerobacter kivui when immobilized in a redox polymer, cobaltocene-functionalized polyallylamine (Cc-PAA), on a cathode for enzyme-mediated H2 formation from electricity. The presence of Cc-PAA increased reductive current density 340-fold when used on an electrode with HDCR at 40 °C, reaching unprecedented current densities of up to 3 mA·cm−2 with minimal overpotential and high faradaic efficiency. In contrast to other hydrogenases, T. kivui HDCR showed substantial reversibility of CO-dependent inactivation, revealing an opportunity for usage in gas mixtures containing CO, such as syngas. This study highlights the important potential of combining redox polymers with novel enzymes from thermophiles for enhanced electrosynthesis.

Download full text files

Export metadata

Metadaten
Author:John C. RuthORCiD, Fabian M. SchwarzGND, Volker MüllerORCiD, Alfred M. SpormannORCiD
URN:urn:nbn:de:hebis:30:3-692512
DOI:https://doi.org/10.3390/catal11101197
ISSN:2073-4344
Parent Title (English):Catalysts
Publisher:MDPI
Place of publication:Basel
Document Type:Article
Language:English
Date of Publication (online):2021/09/30
Date of first Publication:2021/09/30
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2023/07/05
Tag:carbon monoxide; cobaltocene; enzymatic electrosynthesis; hydrogen evolution; hydrogen-dependent CO2 reductase; redox polymer
Volume:11
Issue:10, art. 1197
Article Number:1197
Page Number:10
First Page:1
Last Page:10
HeBIS-PPN:511906072
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International