Bioakkumulation und Biomagnifikation sedimentgebundener Schadstoffe in einer aquatischen Labornahrungskette

  • Lipophile, sedimentgebundene Substanzen sind für endobenthische Tiere in hohem Maße bioverfügbar und können von diesen aufgenommen und angereichert werden. Für benthivore Fische besteht damit das Risiko, diese Chemikalien mit der Nahrung aufzunehmen. Die Aufkonzentrierung sedimentgebundener Chemikalien über zwei oder mehr trophische Ebenen (Biomagnifikation) kann somit durch die Bestimmung der Biokonzentration von Chemikalien in Fischen nach der OECD-Richtlinie 305 (OECD 1996) nicht adäquat erfasst werden. Zur standardisierten Bestimmung der Bioakkumulation und Biomagnifikation wurde eine einfache, zwei trophische Stufen umfassende Labornahrungskette etabliert. Diese bestand aus dem endobenthischen Oligochaeten Tubifex tubifex (MÜLLER) als Beute und dem Dreistachligen Stichling (Gasterosteus aculeatus LINNÉ) als Prädator. Die Experimente wurden mit 14C-markiertem Hexachlorbenzol und Terbutryn in dotiertem künstlichem Sediment und rekonstituiertem Wasser durchgeführt. Um den Einfluss einzelner Expositionspfade an der Gesamtanreicherung der Modellchemikalien zu quantifizieren, wurden die Fische gegenüber dotiertem Wasser bzw. dotiertem Sediment (Biokonzentrationsszenario), vorexponierten Würmern (Biomagnifikationsszenario) und Kombinationen dieser Aufnahmepfade (Bioakkumulationsszenario) exponiert. Sedimentgebundenes HCB wurde im Bioakkumulationsszenario sowohl in den Tubificiden (BAFWurm/Sediment (FG/FG) = 7,8) als auch in den Fischen (AFFisch/Wasser (FG/FG) = 52500; AFFisch/Sediment (FG/FG) = 47; AFFisch/Wurm (FG/FG) = 3,2) deutlich angereichert. Da die Gewebekonzentration von HCB im Räuber, auch auf Basis lipidnormierter Konzentrationen, die Konzentration in seiner Beute überstieg (AFFisch/Wurm (lipidnormiert) = 1,3), kann von einer Aufkonzentrierung der Chemikalie entlang der Labornahrungskette ausgegangen werden (Biomagnifikation). Es konnte gezeigt werden, dass die Exposition gegenüber der Kombination sämtlicher Aufnahmepfade zu deutlich höherer Anreicherung in den Fischen führte als im Falle einzelner Expositionspfade. Ein Vergleich der Ergebnisse der einzelnen Expositionsszenarien erlaubt den Schluss, dass HCB von den Fischen im Bioakkumulationsszenario zu ungefähr gleichen Teilen über das Wasser (45%) und über die Nahrung (41%) aufgenommen wurde, während die Anwesenheit kontaminierten Sediments nur mit 14% zur Gesamtanreicherung beitrug. 14C-Terbutryn wurde im Bioakkumulationsszenario - auf Basis der Gesamtradioaktivität - sowohl in den Tubificiden (AF Wurm/Sediment (FG/FG) = 4,4) als auch in den Fischen (AFFisch/Wasser (FG/FG) = 323; AFFisch/Sediment (FG/FG) = 10; AFFisch/Wurm (FG/FG) = 1,4) angereichert. Allerdings wurde Terbutryn in den Stichlingen zum überwiegenden Teil zu einem polareren Metaboliten transformiert (84%). Daher müssen zur Abschätzung der Anreicherung von Terbutryn die auf den Gehalt an Ursubstanz korrigierten Gewebekonzentrationen und Anreicherungsfaktoren betrachtet werden. Hierbei wird deutlich, dass Terbutryn nicht entlang der Labornahrungskette aufkonzentriert wurde (AFFisch/Wurm = 0,09). Ein Vergleich der Ergebnisse der einzelnen Expositionsszenarien zeigt, dass der Hauptaufnahmepfad von 14C-Terbutryn in Stichlingen das umgebende Wasser ist, während die Anwesenheit kontaminierten Sediments und die Aufnahme über die Nahrung eine untergeordnete Rolle spielen. Da die Messung der Bioakkumulation und Biomagnifikation von sedimentassoziierten Substanzen sehr aufwendig ist, werden zur Abschätzung ihres Risikopotentials vermehrt mathematische Modelle entwickelt und eingesetzt, die eine Chemikalienanreicherung in Nahrungsketten vorhersagen sollen. Im Rahmen der vorliegenden Arbeit wurden die Vorhersagen dreier Modelle mit den experimentell ermittelten Daten verglichen. Hierdurch sollte sowohl die Eignung des entwickelten Testsystems als auch der verwendeten Modelle als nützliche Instrumente des environmental risk assessment überprüft werden. Die Vorhersagen der drei Modelle bei Applikation auf die Daten der Labornahrungskette stimmen gut mit den experimentell bestimmten Konzentrationen von HCB und Terbutryn in den Tubificiden und Fischen überein. Für HCB sagen alle drei Modelle eine Biomagnifikation in der Labornahrungskette vorher. Die Modelle unterschätzen die gemessenen Konzentrationen in den Fischen mit einem Faktor von 1,1 - 1,7 nur geringfügig. Die Konzentration in den Tubificiden wird vom Gobas/Morrison-Modell sehr präzise vorhergesagt (Unterschätzung um Faktor 1,1), während sie im Campfens/Mackay-Modell (Faktor 2,1) und Gobas-Modell (Faktor 6,3) deutlicher unterschätzt wird. Speziell die dem Campfens/Mackay- und Gobas-Modell zugrunde liegenden Annahmen zur Anreicherung in benthischen Organismen erwiesen sich für HCB und Tubificiden als unzureichend zu sein, da die Modelle hierbei nur die Aufnahme aus dem Porenwasser berücksichtigen. Für Terbutryn sind die Modellvorhersagen sehr viel ungenauer als für HCB, da vor allem die starke Metabolisierung von Terbutryn in den Stichlingen unterschätzt wird. Dies resultiert in einer Überschätzung der Terbutryn-Konzentration in den Fischen (Faktor 5,8 - 6,4). Allerdings bleiben zwei Punkte festzuhalten: 1) Die Modelle sagen keine Biomagnifikation von Terbutryn in der Labornahrungskette vorher. 2) Die Modellvorhersagen bestärken die Annahme, dass die Anreicherung von Terbutryn in den Fischen dominiert ist von der Aufnahme aus dem umgebenden Wasser über die respiratorische Oberfläche. Die analysierten Modelle können bei entsprechender Weiterentwicklung als nützliche Instrumente für eine erste Abschätzung des Risikos der Bioakkumulation sedimentgebundener, hoch lipophiler Substanzen in aquatischen Nahrungsketten im Rahmen der Risikoabschätzung (environmental risk assessment) dienen. Zum gegenwärtigen Entwicklungsstand ist die Labornahrungskette jedoch den Modellen vorzuziehen, da sie die konservativeren Daten liefert. Für eine abschließende Beurteilung der vorgestellten Methoden bedarf es allerdings einer Verbreiterung der Datenbasis.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael Meller
URN:urn:nbn:de:hebis:30-0000003237
Referee:Bruno StreitGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/11/19
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/11/08
Release Date:2003/11/19
Tag:Bioakkumulation; Biokonzentration; Biomagnifikation; Hexachlorbenzol; Terbutryn
HeBIS-PPN:115199764
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht