Pseudorandom function tribe ensembles based on one-way permutations: improvements and applications

  • Pseudorandom function tribe ensembles are pseudorandom function ensembles that have an additional collision resistance property: almost all functions have disjoint ranges. We present an alternative to the construction of pseudorandom function tribe ensembles based on oneway permutations given by Canetti, Micciancio and Reingold [CMR98]. Our approach yields two different but related solutions: One construction is somewhat theoretic, but conceptually simple and therefore gives an easier proof that one-way permutations suffice to construct pseudorandom function tribe ensembles. The other, slightly more complicated solution provides a practical construction; it starts with an arbitrary pseudorandom function ensemble and assimilates the one-way permutation to this ensemble. Therefore, the second solution inherits important characteristics of the underlying pseudorandom function ensemble: it is almost as effcient and if the starting pseudorandom function ensemble is efficiently invertible (given the secret key) then so is the derived tribe ensemble. We also show that the latter solution yields so-called committing private-key encryption schemes. i.e., where each ciphertext corresponds to exactly one plaintext independently of the choice of the secret key or the random bits used in the encryption process.
Author:Marc FischlinGND
Editor:Jacques Stern
Document Type:Preprint
Year of Completion:1999
Year of first Publication:1999
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2005/07/21
GND Keyword:Kryptologie; Kongress; Prag <1999>; Online-Publikation
Page Number:17
First Page:1
Last Page:17
Erschienen in: Jacques Stern (Hrsg.): Advances in cryptology : proceedings, Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1999, Lecture notes in computer science ; Vol. 1592, S. 432-445, ISBN: 978-3-540-65889-4, ISBN: 3-540-65889-0, ISBN: 978-3-540-48910-8, doi:10.1007/3-540-48910-X_30
Source:A preliminary version appeared in Advances in Cryptology - Eurocrypt '99 Lecture Notes in Computer Science, Vol.1592, Springer-Verlag, pp.429-444, 1999 © IACR ;
Institutes:Informatik und Mathematik / Mathematik
Informatik und Mathematik / Informatik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht