A cost-effective pay-per-multiplication comparison method for millionaires

  • Based on the quadratic residuosity assumption we present a non-interactive crypto-computing protocol for the greater-than function, i.e., a non-interactive procedure between two parties such that only the relation of the parties' inputs is revealed. In comparison to previous solutions our protocol reduces the number of modular multiplications significantly. We also discuss applications to conditional oblivious transfer, private bidding and the millionaires' problem.
Metadaten
Author:Marc FischlinGND
URN:urn:nbn:de:hebis:30-12611
DOI:https://doi.org/10.1007/3-540-45353-9_33
ISBN:978-3-540-41898-6
ISBN:3-540-41898-9
ISBN:978-3-540-45353-6
Editor:David Naccache
Document Type:Preprint
Language:English
Year of Completion:2001
Year of first Publication:2001
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2005/07/20
Tag:Modular Multiplication; Oblivious Transfer; Quadratic Residue; Random String; Security Parameter
GND Keyword:Kryptologie; Kongress; San Francisco; Online-Publikation
Page Number:15
Note:
Erschienen in: David Naccache (Hrsg.): Topics in cryptology : the Cryptographers' Track at the RSA Conference 2001 ; proceedings, Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2001, Lecture notes in computer science ; Vol. 2020, S. 457-471, ISBN: 978-3-540-41898-6, ISBN: 3-540-41898-9, ISBN: 978-3-540-45353-6, doi:10.1007/3-540-45353-9_33
Source:RSA Security 2001 Cryptographer's Track , Lecture Notes in Computer Science, Vol.2020, pp.457-471, Springer-Verlag, 2001 , http://link.springer.de/link/service/series/0558/tocs/t1880.htm , http://www.mi.informatik.uni-frankfurt.de/research/papers/fischlin
HeBIS-PPN:226520471
Institutes:Informatik und Mathematik / Mathematik
Informatik und Mathematik / Informatik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht