On the impossibility of constructing non-interactive statistically-secret protocols from any trapdoor one-way function

  • We show that non-interactive statistically-secret bit commitment cannot be constructed from arbitrary black-box one-to-one trapdoor functions and thus from general public-key cryptosystems. Reducing the problems of non-interactive crypto-computing, rerandomizable encryption, and non-interactive statistically-sender-private oblivious transfer and low-communication private information retrieval to such commitment schemes, it follows that these primitives are neither constructible from one-to-one trapdoor functions and public-key encryption in general. Furthermore, our separation sheds some light on statistical zeroknowledge proofs. There is an oracle relative to which one-to-one trapdoor functions and one-way permutations exist, while the class of promise problems with statistical zero-knowledge proofs collapses in P. This indicates that nontrivial problems with statistical zero-knowledge proofs require more than (trapdoor) one-wayness.
Author:Marc FischlinGND
Editor:Bart Preneel
Document Type:Preprint
Year of Completion:2002
Year of first Publication:2002
Publishing Institution:Universit├Ątsbibliothek Johann Christian Senckenberg
Release Date:2005/07/20
Tag:Commitment Scheme; Oblivious Transfer; Oracle Query; Private Information Retrieval; Random Oracle
GND Keyword:Kryptologie; Kongress; San Jose; Online-Publikation
Page Number:27
First Page:1
Last Page:27
Erschienen in: Bart Preneel (Hrsg.): Topics in cryptology : the Cryptographers' Track at the RSA Conference 2002 ; proceedings, Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2002, Lecture notes in computer science ; Vol. 2271, S. 79-95, ISBN: 978-3-540-43224-1, ISBN: 3-540-43224-8, ISBN: 978-3-540-45760-2, doi:10.1007/3-540-45760-7_7
Source:RSA Security 2002 Cryptographer's Track. - Lecture notes in computer science, vol. 2271, pp. 79-95, Springer-Verl., 2002 - http://link.springer.de/link/service/series/0558/tocs/t2271.htm , http://www.mi.informatik.uni-frankfurt.de/research/papers/fischlin
Institutes:Informatik und Mathematik / Mathematik
Informatik und Mathematik / Informatik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht