Movement behaviour and seed dispersal patterns of trumpeter hornbills (Bycanistes bucinator) in fragmented landscapes

  • Long-distance seed dispersal is a crucial process allowing the dispersal of fleshy-fruited tree species among forest fragments. In particular, large frugivorous bird species have a high potential to provide inter-patch and long-distance seed transport, both important for maintaining fundamental genetic and demographic processes of plant populations in isolated forest fragments. In the face of increasing worldwide forest fragmentation, the investigation of long-distance seed dispersal and the factors influencing seed dispersal processes has recently become a central issue in ecology. In my thesis, I studied the movement behaviour and the seed dispersal patterns of the trumpeter hornbill (Bycanistes bucinator), a large obligate frugivorous bird, in KwaZulu-Natal, South Africa. I investigated (i) the potential of trumpeter hornbills to provide long-distance seed dispersal within different landscape structures, (ii) seasonal variations in ranging behaviour of this species, and (iii) the potential of this species to enhance the functional connectivity of a fragmented landscape. I used highresolution GPS-data loggers to record temporally and spatially fine-scaled movement data of trumpeter hornbills within both continuous forests and fragmented agricultural landscapes during the breeding- and the non-breeding season. First, combining these data with data on seed-retention times, I calculated seed dispersal kernels, able to distinguish between seed dispersal kernels from the continuous forests and those from the fragmented agricultural landscapes. The seed dispersal distributions showed a generally high ability of trumpeter hornbills to generate seed transport over a distance of more than 100 m and for potential dispersal distances of up to 14.5 km. Seed dispersal distributions were considerably different between the two landscape types, with a bimodal distribution showing larger dispersal distances for fragmented agricultural landscapes and a unimodal one for continuous forests. My results showed that the landscape structure strongly influenced the movement behaviour of trumpeter hornbills, and this variation in behaviour is likely reflected in the shape of the seed dispersal distributions. Second, for each individual bird I calculated daily ranges and investigated differences in daily ranging behaviour and in the process of range expansion comparatively between the breeding- and the non-breeding season. I considered differences in habitat use and possible consequences resulting for seed dispersal function during different seasons. I found that within the breeding season multi-day ranges were built from strongly overlapping and nearly stationary daily ranges which were almost completely restricted to continuous forest. In the non-breeding season, however, birds assembled multi-day ranges by shifting their range site to a generally different area, frequently utilizing the fragmented agricultural landscape. Thereby, several small daily ranges and few large daily ranges composed larger multi-day ranges within the non-breeding season. Seasonal differences in ranging behaviour and range assembly processes resulted in important consequences for seed dispersal function, with short distances and less spatial variation during the breeding season and more inter-patch dispersal across the fragmented landscape during the non-breeding season. Last, I used a projection of simulated seed dispersal events on a high-resolution habitat map to assess the extent to which trumpeter hornbills potentially facilitate functional connectivity between plant populations of isolated forest fragments. About 7% of dispersal events resulted in potential between-patch dispersal and trumpeter hornbills connected a network of about 100 forest patches with an overall extent of about 50 km. Trumpeter hornbills increased the potential of functional connectivity of the landscape more than twofold and seed dispersal pathways revealed certain forest patches as important stepping-stones for seed dispersal among forest fragments. Overall, my study highlights the overriding role that large frugivorous bird species, like trumpeter hornbills, play in seed dispersal in fragmented landscapes. In addition, it shows the importance of fine-scaled movement data combined with high-resolution habitat data and consideration of different landscape structures and seasonality for a comprehensive understanding of seed dispersal function.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Johanna Lenz
Place of publication:Frankfurt am Main
Referee:Katrin Böhning-GaeseORCiDGND, Oliver Tackenberg
Advisor:Katrin Böhning-Gaese
Document Type:Doctoral Thesis
Date of Publication (online):2014/01/24
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2013/12/19
Release Date:2014/01/24
Edition:2. Fassung
Page Number:117
Institutes:Biowissenschaften / Biowissenschaften
Biowissenschaften / Institut für Ökologie, Evolution und Diversität
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht