Untersuchungen zur Manipulation der Proteinadsorption an Oligoethylenglycol- und Polyglycerol-haltigen Beschichtungen
- In dieser Arbeit werden Projekte beschrieben, in denen das Adsorptionsverhalten von Proteinen und Bakterien an verschiedene Materialoberflächen manipuliert wird.
Durch die Reaktion verschiedener oxidischer Oberflächen mit Glycidol konnten biorepulsive Polyglycerolschichten erzeugt werden. Für die Herstellung dieser Polyglycerolschichten wurden zwei unterschiedliche Verfahren entwickelt und untersucht. Die erste Methode beruht auf der Bildung einer aminoterminierten Monolage auf Silicium-Oberflächen, an der in einem zweiten Schritt die Polymerisation von Glycidol durchgeführt wird. Die Dicke der angebundenen Polyglycerolschicht ist abhängig von der Beschichtungsdauer, wobei die dicksten Schichten bis zu 98% der Bakterienadhäsion unterdrücken können. Das zweite Verfahren ist die direkte Anbindung von stabilen Polyglycerol-Beschichtungen an Silicium-, Aluminium- oder Stahl-Oberflächen. Je größer die abgeschiedene Polyglycerolmenge ist, desto höher ist die Biorepulsivität der Schicht, was durch Adsorptionstests mit Proteinen und ermittelt wurde.
Polyglycerolschichten eignen sich besonders gut für die nachträgliche Modifizierung. So konnten beispielsweise mittels Elektronenstrahlen laterale Strukturierungen der Polyglycerol-beschichteten Oberflächen erfolgreich durchgeführt werden. Sensorisch aktive Moleküle wie Ethylendiamintetraessigsäure oder Biotin konnten im Rahmen dieser Arbeit nachträglich an Polyglycerolschichten angebunden werden. Die Aktivität der Bindungsstellen nach der Anbindung an die Oberfläche konnte dabei durch spezifische Erkennungsereignisse nachgewiesen werden.
Im zweiten Teil dieser Arbeit wurden selbstanordnende Monoschichten mit Oligoethylenglycol (OEG)-Kopfgruppen und Thiolat-Ankergruppen verwendet, um lateral strukturierbare, biorepulsive Schichten auf Gold zu erzeugen. Es wurde untersucht, ob derartige OEG-Monolagen kontrolliert durch langwelliges UV-Licht (390 nm) abgebaut werden können, um proteinbindende und proteinrepulsive Bereiche auf einer Substrat-Oberfläche zu generieren. Die Bestrahlung mit UV-Licht bewirkte die Oxidation und Abspaltung der Ethylenglycol-Einheiten, wodurch die unspezifische Adsorption von Proteinen erfolgen kann. Zusätzlich konnten Photooxidations-Reaktionen an der Thiolat-Ankergruppe nachgewiesen werden, welche die Ablösung des SAM-Bausteins zur Folge haben.
Für den Einsatz von Lithographie-Techniken in mikrofluidischen Anlagen wurde das Abbauverhalten der biorepulsiven Monolage bei der Bestrahlung unter Wasser untersucht. In Abwesenheit von molekularem Sauerstoff kommt es hier lediglich zur Spaltung der Etherbindung zwischen den Ethylenglycol-Einheiten. Die Beobachtung, dass die An- bzw. Abwesenheit von molekularem Sauerstoff zu zwei unterschiedlichen Abbaumechanismen führt, kann für die Feinabstimmung der Oberflächenbeschaffenheit und somit der Proteinanlagerung genutzt werden.
Biorepulsive OEG-Monolagen können auch dazu verwendet werden, um gezielt bestimmte Biomoleküle anzulagern. Dazu können die Monolagen mit Erkennungsstellen ausgestattet werden, welche die spezifische Anbindung einer Biomolekül-Spezies ermöglichen. Gerade bei der Detektion von großen Biomolekülen oder Mikroorganismen spielt jedoch nicht nur die chemische Zusammensetzung, sondern auch die Ausrichtung der Bindungsstelle eine entscheidende Rolle. Für die Untersuchung des Orientierungseinflusses wurden Moleküle verwendet, die neben einer Mannose-Einheit als Bindungsstelle für Bakterien auch eine Azobenzol-Gruppe, welche die strahlungsinduzierte reversible Schaltung der Konformation ermöglicht, tragen. Bakterien-Adhäsionstests zeigten, dass sich die Orientierung der Mannose-Einheit auf die Anbindung der Bakterien auswirkt.
Im Rahmen dieser Arbeit wurden neuartige Methoden zur Herstellung, Charakterisierung und Strukturierung biorepulsiver und biosensorischer Schichten entwickelt. Die dadurch gewonnenen Erkenntnisse sind von bedeutender wissenschaftlicher Relevanz und ermöglichen die potentielle industrielle Anwendung der entwickelten Methoden im Kontext der Material- und Biotechnologie sowie der Nanofabrikation.