Functional dynamics of ribonucleic acids : development and application of spectroscopic tools
- Im Rahmen der vorliegenden Dissertation wird der Aufbau eines zeitaufgelösten Fluorimeters, die photophysikalische Grundcharakterisierung der drei 2-(Pyrenylethinyl)-Adenosine (PyAs) und das Wechselwirkungsgeflecht des tetracyclinbindenden Aptamers (TC-Aptamer) mit seinem Liganden Tetracycyclin (TC) und Mg2+ dargestellt. Das zeitaufgelöste Fluorimeter basiert auf der experimentellen Technik des zeitkorrelierten Einzelphotonenzählens. Es verfügt über zwei Anregungsquellen: gepulste UV-LEDs und einen frequenzverdoppelten titandotierten Saphirlaser. Diese Quellen Decken einen Wellenlängenbereich von (310 - 550) nm ab. Das Spektrometer kann unter günstigen Umständen eine Zeitauflösung von 50 ps erreichen bei einer zeitlichen Messungenauigkeit von weniger als 0,02 %. Die Leistungsfähigkeit des Aufbaus wird anhand einer umfangreichen Studie an den drei PyAs demonstriert. Die drei PyAs 2-(1-Pyrenylethinyl)-Adenosine (1PyA), 2-(2-Pyrenylethinyl)-Adenosine (2PyA) und 2-(4-Pyrenylethinyl)-Adenosine (4PyA) sind eine Gruppe fluoreszierender RNA-Nukleosidanaloga, welche die Gesamtheit aller möglichen Konfigurations-isomere der Grundverbindung PyA umfassen. Ihre zeitabhängigen Fluoreszenzzerfallseigenschaften werden ergänzt von stationären Absorptions- und Fluoreszenzspektren, ultraschneller transienter Absorptionsspektroskopie und quantenchemischen Rechnungen. Die Fluoreszenz von 1PyA und 4PyA gehorchen der Regel von Kasha, wohingegen 2PyA einen triexponentiellen Zerfall mit ausgeprägter Abhängigkeit von der Anregungswellenlänge zeigt. Die transienten Absorptionsspektren aller drei Isomere weisen im gesamten Spektrum dominante, wenig strukturierte Absorptionsbanden des ersten angeregten Zustands auf, welche im nahen UV in unterschiedlichem Maße vom Grundzustandsbleichen und stimulierter Emission überlagert werden. 2PyA zeigt eine deutlich ausgeprägte Signatur für eine interne Umwandlung hin zum S1, wenn es in höhere angeregte Zustände angeregt wird. Das Fluoreszenzverhalten von 2PyA wird mithilfe eines lokal angeregten (LE) und zweier intramolekularer Ladungstransferzustände, von denen einer der koplanaren Orientierung von Pyren und Adenin (MICT) und der andere einer um 90 ° verdrehten Orientierung (TICT) entspricht. Der LE-Zustand ist hierbei verknüpft mit dem S2 von 2PyA, welcher einer rein pyrenlokalisierten Anregung entspricht. Dieser Zustand existiert so in 1PyA und 4PyA nicht. Der verdrehte TICT-Zustand ist nur in 2PyA bevölkerbar, weil für 2PyA die Barriere zur Bildung von Rotameren am niedrigsten ist und das Molekül nach Anregung daher in diese Geometrie kommen kann und dann durch die stärkere elektrostatische Anziehung stabilisiert wird. 1PyA und 4PyA emittieren hingegen nur aus dem MICT-Zustand. Die Komplexbildung des TC-Aptamers mit seinem Liganden TC in Lösung wird empfindlich beeinflusst durch die-Konzentration von Magnesiumkationen. Dies wird untersucht durch Bindungs- und Faltungs- und Denaturierungsstudien mit verschiedenen Mg- und Harnstoffkonzentrationen. Als experimentelle Observable dienen hierbei die konformationsabhängige Nukleobasenabsorption und ihr Zirkulardichroismus im fernen UV, die Fluoreszenz des Liganden TC und die freiwerdende Wärme der exothermen Bindungsreaktion des Aptamers mit Mg in An- und Abwesenheit von TC. Ohne Mg ist eine Interaktion des TC-Aptamers mit TC nicht nachweisbar. Dies liegt daran, dass Mg die notwendige elektrostatische Abschirmung der negativen elektrischen Ladung am RNA-Rückgrat zur Verfügung stellt. Die Abschirmung erlaubt es dem Aptamer kompakte Strukturen mit tertiären Kontakten auszubilden. Wenn die Mg-Konzentration die Faltung des Aptamers vollständig unterstützt (> 1 mM), so befindet sich das Aptamer weitgehend in einer vorgefalteten Konformation, welche der bindungskompetenten stark ähnelt. In diesem Zustand kann das Aptamer seinen Liganden extrem schnell, nämlich annähernd diffusionslimitiert binden. Unter diesen Bedingungen hat TC kaum Einfluss auf die Konformation seines Aptamers. Bei physiologischen Mg-Konzentrationen (0,2 - 0,8 mM) kann das Aptamer kompakte Konformationen mit tertiären Strukturen einnehmen. Diejenige Konformation, welche der bindenden sehr stark ähnelt, dominiert das konformationelle Gleichgewicht jedoch noch nicht vollständig, es ist lediglich eine Konformation von vielen möglichen. Daher eröffnen physiologische Mg-Konzentrationen dem TC-Aptamer Teile des Konformationsraumes, welche andernfalls nicht zugänglich wären und TC stabilisiert selektiv die native Konformation. Diese konformationelle Verschiebung liefert kann hierbei zur robusten Signalgebung für die Funktion als Riboschalter dienen.
Author: | Andreas ReußGND |
---|---|
URN: | urn:nbn:de:hebis:30:3-413202 |
Place of publication: | Frankfurt am Main |
Referee: | Josef WachtveitlORCiDGND, Thomas PrisnerORCiD |
Advisor: | Josef Wachtveitl |
Document Type: | Doctoral Thesis |
Language: | English |
Date of Publication (online): | 2016/07/28 |
Year of first Publication: | 2016 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Granting Institution: | Johann Wolfgang Goethe-Universität |
Date of final exam: | 2016/07/12 |
Release Date: | 2016/07/28 |
Tag: | Conformational Dynamics; Optical Spectroscopy; Photodynamics; Ribonucleic Acids; Time-resolved Fluorescence |
Page Number: | 182 |
HeBIS-PPN: | 385182333 |
Institutes: | Biochemie, Chemie und Pharmazie / Biochemie und Chemie |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften |
Sammlungen: | Universitätspublikationen |
Licence (German): | Deutsches Urheberrecht |