Zweiphotonen-Entschützung von Oligonukleotiden

  • Um die Funktionsweise von biologischen Prozessen zu untersuchen, werden Trigger-Signale benötigt, die die Prozesse initiieren können, ohne dabei dem Organismus zu schaden oder Nebenreaktionen hervorzurufen. Ein geeignetes Trigger-Signal stellt Licht dar, da es bei geeigneter Wellenlänge nichtinvasiv ist und nur wenige biologische Prozesse durch Licht gesteuert werden. Um einen Prozess mit Licht aktivierbar zu machen, benötigt man eine lichtsensitive Einheit, beispielsweise eine photolabile Schutzgruppe, die durch die Bestrahlung mit Licht einen zuvor blockierten Bereich freisetzt. Hauptziel dieser Arbeit war es die Zweiphotonen-Technik für die Photolyse von photolabil geschützten Oligonukleotiden nutzbar zu machen und das Photolyseergebnis zu visualisieren. Dazu wurden zunächst verschiedene mit Zweiphotonen-sensitiven Schutzgruppen modifizierte Phosphoramidite synthetisiert und über Festphasensynthese in Oligonukleotide eingebaut. Die Oligonukleotide mit den erstmals neu eingebauten Schutzgruppen ANBP und hNDBF wurden zunächst auf ihre Einphotonen-Eigenschaften, wie Schmelzpunkt, Absorptionsverhalten und Quantenausbeute untersucht. Weiterhin wurden erste Versuche zur wellenlängenselektiven Photolyse von hNDBF- und ANBP-geschützten Oligonukleotiden durchgeführt. Die Existenz eines Zweiphotonen-induzierten Effekts kann durch die quadratische Abhängigkeit des erzeugten Effekts von der eingestrahlten Leistung nachgewiesen werden. Dazu wurde ein Verdrängungs-Assay entwickelt, dessen Doppelstrang-Sonde aus einem FRET-Paar besteht. Der Fluorophor-markierte Strang dient dabei als Gegenstrang zum photolabil geschützten Strang. Durch einen Thiol-Linker am photolabil geschützten Oligonukleotid konnte dieses erfolgreich in Maleimid-Hydrogele immobilisiert werden und der Verdrängungs-Assay im Gel durchgeführt werden. Die immobilisierten Stränge enthielten DEACM bzw. ANBP Schutzgruppen. Neben der quadratischen Abhängigkeit der Photolyse von der eingestrahlten Leistung konnten in diesen Hydrogelen auch 3D-aufgelöste Photolysen realisiert werden, die eindeutig die Zwei-Photonen-Photolyse belegen. Diese 3D-Experimente wurden zusammen mit Dr. Stephan Junek am MPI für Hirnforschung durchgeführt. Durch die Wahl zweier unterschiedlicher Sequenzen für die dTDEACM und dGANBP modifizierten Stränge und zwei unterschiedlicher Fluorophore für die Doppelstrang-Sonden, konnte die orthogonale Zweiphotonen-Photolyse gezeigt werden. Um zu zeigen, dass die Zweiphotonen-Photolyse von Oligonukleotiden auch in Organismen realisiert werden kann ohne das biologische System zu schädigen, wurde versucht den Verdrängungs-Assay auch in Zellen durchzuführen. Durch die Verwendung der Patch-Clamp-Technik in Zusammenarbeit mit Dr. Stephan Junek am MPI für Hirnforschung konnten die Stränge über die Elektrolyt-Lösung in Hippocampus-Neuronen eingebracht werden und durch Zweiphotonen-Bestrahlung dort photolysiert werden, was zu einem deutlichen Fluoreszenzanstieg führte. Durch die angeschlossene Patch-Clamp-Pipette konnten so zusätzlich elektrophysiologische Messungen durchgeführt werden, die zeigten, dass die durchgeführte Zweiphotonen-Bestrahlung nicht invasiv für die Zellen ist. Die durchgeführten Experimente beweisen, dass Zweiphotonen-sensitive Schutzgruppen auf Oligonukleotiden photolysiert werden können und dass ihr Einsatz auch in biologischen Systemen möglich ist. Der entwickelte Verdrängungs-Assay ermöglicht es weiterhin neue photolabile Schutzgruppen auf Oligonukleotiden auf ihre Zweiphotonen-Sensitivität zu untersuchen. Ein weiteres Projekt beschäftigte sich mit der Synthese der neuen Schutzgruppe DMA-NDBF-OH, die in-silico von der Arbeitsgruppe von Prof. Andreas Dreuw aus Heidelberg als effiziente Zweiphotonen-sensitive Schutzgruppe beschrieben wird. Es wurde versucht DMA-NDBF-OH über zwei Syntheserouten herzustellen. Eine Route basierte auf der Einführung der Funktionalitäten an einem unmodifizierten Dibenzofuran, die leider an der Bromierung der Seitenkette scheiterte. Die zweite Syntheseroute wurde in Anlehnung an die NDBF-Synthese von Deiters et al., bei der das Dibenzofuran durch eine Kondensation zweier modifizierter Benzolringe und einem Pd-katalysierten Ringschluss aufgebaut wird, durchgeführt. Mit dieser Syntheseroute konnte das DMA-NDBF-OH erfolgreich synthetisiert werden. Aufgrund ihrer starken bathochromen Verschiebung sollte sich diese Schutzgruppe hervorragend für die wellenlängenselektive Photolyse auf Ein- und Zweiphotonenebene eignen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Manuela A. H. Fichte
URN:urn:nbn:de:hebis:30:3-426069
Place of publication:Frankfurt am Main
Referee:Alexander HeckelORCiDGND, Joachim W. EngelsORCiDGND
Advisor:Alexander Heckel
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2017/01/18
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/11/24
Release Date:2017/01/18
Tag:Oligonukleotide; Zweiphotonen; photolabile Schutzgruppe
Page Number:198
HeBIS-PPN:398758107
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht