Impacts of climate change on interacting plant and bird species : a trait-based perspective

  • Global biodiversity is changing rapidly and contemporary climate change is an important driver of this change. As climate change continues, the challenge is to understand how it may affect the future of biodiversity. This is relevant to informing policy and conservation, but it requires reliable future projections of biodiversity. Biodiversity is the variety of life on Earth which includes the diversity of species. The species on Earth are linked in diverse networks of biotic interactions. Interacting species can respond differently to climate change. This can cause spatial or temporal mismatches between interacting species and result in secondary extinctions of species that lose obligate interaction partners. Yet, accounting for biotic interactions in biodiversity projections remains challenging. One way to address this challenge is the use of trait-based approaches because the impact of climate change on interacting species is influenced by species’ functional traits, i.e., measurable characteristics of the species that influence their abiotic and biotic interactions. First, species’ functional traits influence how species respond to climate change. Second, they influence whether the species find compatible interaction partners in reshuffled species assemblages under climate change. Thus, the overarching aim of this dissertation was to explore how trait-based approaches can increase our understanding of how climate change might affect interacting species. For this, I focussed on interactions between fleshy-fruited plants and avian frugivores along a tropical elevational gradient. I investigated three principal research questions. First, I investigated how traits related to the sensitivity of avian frugivores to climate change and their adaptive capacity vary along elevation and covary across species. I combined estimates of species’ climatic niche breadth (approximating species’ sensitivity) with traits influencing species’ dispersal ability, dietary niche breadth and habitat niche breadth (aspects of species’ adaptive capacity). Species’ climatic niche breadth increased with increasing elevation, while their dispersal ability and dietary niche breadth decreased with increasing elevation. Across species, there was no significant relationship of the sensitivity of the avian frugivores to climate change and their adaptive capacity. The opposing patterns of species’ sensitivity to climate change and their adaptive capacity along elevation imply that species from assemblages at different elevations may respond differently to climate change. The independence between species’ sensitivity and adaptive capacity suggests that it is important to account for both sensitivity and adaptive capacity to fully understand how climate change might affect biodiversity. Second, I assessed how climate change might influence the co-occurrence of interaction partners with compatible traits, i.e., the functional correspondence of interacting species. I integrated future projections of species’ elevational ranges considering different vertical dispersal scenarios with analyses of the functional diversity of interacting species assemblages. The functional correspondence of fleshy-fruited plants and avian frugivores was lowest if plant and bird species were projected to contract their ranges towards higher elevations in response to increasing temperatures. Contrastingly, if species were projected to expand their ranges upslope, the functional correspondence remained close. The low functional correspondence under a scenario of range contraction indicates that plant species with specific traits might miss compatible interaction partners in future assemblages. This could negatively affect their seed dispersal ability. These results suggest that ensuring the integrity of biotic interactions under climate change requires that species can shift their ranges upslope unlimitedly. Third, I examined whether avian seed dispersal is sufficient for plants to track future temperature change along the elevational gradient. With a trait-based modelling approach, I simulated seed-dispersal distances avian frugivores can provide to fleshy-fruited woody plant species and quantified the number of long-distance dispersal events the plant species would require to fully track projected temperature shifts along elevation. Most plant species were projected to require several long-distance dispersal events to fully track the projected temperature shifts in time. However, the number of required long-distance dispersal events varied with the degree of trait matching and plant species’ traits. These findings suggest that avian seed dispersal is insufficient for plants to track future temperature change along the elevational gradient as woody plant species might not be able to undergo several consecutive long-distance dispersal events within a short time window, due to their long maturation times. These results also imply that the ability of bird-dispersed plant species to track climate change is associated with the specialization of the seed dispersal system and with plant species’ traits. Trait-based approaches are promising tools to study impacts of climate change on interacting species. The trait-based approaches that I have developed in this thesis are applicable more widely, e.g., to other types of biotic interactions, or to assess the effects of other drivers of global change. Moreover, these approaches may be further developed to model changes in biotic interactions under global change more dynamically. Taken together, I have shown how a trait-based perspective could help to account for biotic interactions in biodiversity projections. The development of such approaches and the gained knowledge are urgently needed to facilitate the conservation of biodiversity in a rapidly changing world.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Larissa Nowak
Place of publication:Frankfurt am Main
Referee:Matthias SchleuningORCiDGND, Claus BässlerORCiDGND
Advisor:Matthias Schleuning
Document Type:Doctoral Thesis
Date of Publication (online):2021/08/02
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/07/27
Release Date:2021/11/11
Tag:Biotic interactions; Climate change; Functional traits
Page Number:143
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht