Glutamine synthetase : a potential therapeutic target in acute myeloid leukemia

  • Acute myeloid leukemia (AML) is one of the most frequently occurring and fatal types of leukemia. Initiated by genetic alterations in hematopoietic stem and progenitor cells, rapidly proliferating cancer cells (leukemic blasts) infiltrate the bone marrow and damage healthy hematopoiesis. Subgroups of AML are defined by underlying molecular and cytogenetic abnormalities, which are decisive for treatment and prognosis. For AML patients that can be intensively treated, the first line treatment remains a combination of cytarabine and anthracycline, which was developed in the 1970s. While this treatment regimen clears the disease and reinstates normal hematopoiesis (complete remission, CR) in 60% to 80% of patients below the age of 60, CR rates in patients above the age of 60 are only 40% to 50%. Relapse and refractory disease are the major cause of death of AML patients, despite large efforts to improve risk-adjusted post-remission therapy with further chemotherapy cycles and, if possible, allogeneic bone marrow transplantation. Elderly patients are particularly difficult to treat because of age-related comorbidities and because their disease tends to relapse more often than the disease of younger patients. Thus, the cure rates of AML vary with age, with 5-year survival rates of about 50% in young patients, and less than 20% in patients above the age of 65 years. With the median age of AML patients being 68 years, the need for novel therapeutic options is immense. The recent approval of eight new agents (venetoclax, midostaurin, gilteritinib, glasdegib, ivosidenib, enasidenib, gemtuzumab ozogamicin and CPX-351 (liposomal cytarabine and daunorubicin)) has added considerably to the therapeutic armamentarium of AML and has increased cure rates in specific subgroups of AML. However, the high heterogeneity among patients, clonal evolution and commonly occurring drug resistance, which cause the high relapse rates, remain a substantial problem in the treatment of AML. Therefore, a better understanding of currently used therapeutics and further development of novel therapeutics is urgently needed. In recent years, attention has increasingly focused on therapeutic strategies to interfere with the metabolic requirements of cancer cells. The last three decades have provided extensive insights into the diversity and flexibility of AML metabolism. AML cells use different sources of nutrients compared to normal hematopoietic progenitor cells and reprogram their metabolic pathways to fulfill their exquisite anabolic and energetic needs. As a result, they develop high metabolic plasticity that enables them to thrive in the bone marrow microenvironment, where oxygen and nutrient availability are subject to constant change. Cancer cells, specifically AML cells, have a strong dependency for the amino acid glutamine. Glutamine serves in energy production, redox control, cell signaling as well as an important nitrogen source. The only enzyme capable of de novo glutamine synthesis is glutamine synthetase (GS). GS catalyzes glutamine production from glutamate and ammonium. In AML, the metabolic role and dependency of GS is poorly understood. Here, we investigated the effects of GS deletion on AML growth, and its functional relevance in AML metabolism. Genetic deletion of GS resulted in a significant decrease of cell growth in vitro, and impaired leukemia progression in vivo in a xenotransplantation mouse model. Interestingly, the dependency of AML cell growth on GS was shown to be independent of its functional role in glutamine synthesis. Glutamine starvation did not increase the dependency of the AML cells on GS, nor did increased glutamine availability rescue the GS-knockout-associated growth disadvantage. Instead, functional studies revealed the role of GS in the detoxification of ammonium. GS-deficient cells showed elevated ammonium secretion as well as a higher sensitivity towards the toxic metabolite. Exogenous provision of 15N-labeled ammonium was detoxified by GS-driven incorporation into glutamine. Studies on cells that had gained resistance to GS-knockout-mediated growth inhibition indicated enzymes involved in the urea cycle and the arginine biogenesis pathway to compensate for a loss of GS. Together, these findings unveiled GS as an important ammonium scavenger in AML. Clinical studies on AML patients revealed increased ammonium concentrations in the blast-infiltrated bone marrow compared to peripheral blood. In line with this finding, proteome and transcriptome analysis of AML blasts showed a significant upregulation of GS in AML compared to healthy progenitors, further indicating its importance in ammonium detoxification. Analyzing pathways that contribute to ammonium production revealed protein uptake followed by amino acid catabolism as a yet not identified mechanism supporting AML growth. Protein endocytosis and subsequent proteolytic degradation were shown to rescue AML cells from otherwise growth-inhibiting glucose or amino acid depletion. Furthermore, protein metabolization led to the reactivation of the mammalian target of rapamycin (mTOR) signaling pathway, which was deactivated upon leucine and glutamine depletion, revealing protein consumption as an important alternative source of amino acids in AML. ...

Download full text files

Export metadata

Author:Johanna KreitzORCiDGND
Place of publication:Frankfurt am Main
Referee:Harald SchwalbeORCiDGND, Hubert ServeORCiDGND, Marta CascanteORCiD
Document Type:Doctoral Thesis
Date of Publication (online):2022/05/25
Year of first Publication:2022
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/04/01
Release Date:2022/06/28
Tag:Acute myeloid leukemia (AML); Metabolism
Page Number:124
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):License LogoDeutsches Urheberrecht