From replica symmetry to metastability in random constraint satisfaction problems language
- This thesis concerns three specific constraint satisfaction problems: the k-SAT problem, random linear equations and the Potts model. We investigated a phenomenon called replica symmetry, its consequences and its limitation. For the $k$-SAT problem, we were able to show that replica symmetry holds up to a threshold $d^{*}$. However, after another critical threshold $d^{**}$, we discovered that replica symmetry could not hold anymore, which enabled us to establish the existence of a replica symmetry breaking region. For the random linear problem, a peculiar phenomenon occurs. We observed that a more robust version of replica symmetry (strong replica symmetry) holds up to a threshold $d=e$ and ceases to hold after. This phenomenon is linked to the fact that before the threshold $d=e$, the fraction of frozen variables, i.e. variable forced to take the same value in all solutions, is concentrated around a deterministic value but vacillates between two values with equal probability for $d>e$. Lastly, for the Potts model, we show that a phenomenon called metastability occurs. The latter phenomenon can be understood as a consequence of trivial replica symmetry breaking scheme. This metastability phenomenon further produces slow mixing results for two famous Markov chains, the Glauber and the Swendsen-Wang dynamics.
Author: | Jean Bernoulli RavelomananaORCiDGND |
---|---|
URN: | urn:nbn:de:hebis:30:3-691980 |
DOI: | https://doi.org/10.21248/gups.69198 |
Place of publication: | Frankfurt am Main |
Referee: | Amin Coja-OghlanORCiDGND, Lutz Warnke |
Document Type: | Doctoral Thesis |
Language: | English |
Date of Publication (online): | 2022/08/22 |
Year of first Publication: | 2021 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Granting Institution: | Johann Wolfgang Goethe-Universität |
Date of final exam: | 2022/08/15 |
Release Date: | 2022/08/24 |
Page Number: | 235 |
Note: | Kumulative Dissertation – enthält die eingereichten Manuskriptversionen (Author Submitted Manuscripts) der folgenden Artikel: Coja-Oghlan, Amin; Müller, No͏e͏̈la; Ravelomanana, Jean B. (2020): Belief propagation on the random k-SAT model. math.PR, arXiv:2011.02303 Coja-Oghlan, Amin; Cooley, Oliver; Kang, Mihyun; Lee, Joon; Ravelomanana, Jean Bernoulli (2021): The sparse parity matrix. math.CO, arXiv:2107.06123v1 Cooley, Oliver; Lee, Joon; Ravelomanana, Jean B. (2021): Warning propagation: stability and subcriticality. math.CO, arXiv:2111.15577v1 Coja-Oghlan, Amin; Galanis, Andreas; Goldberg, Leslie Ann; Ravelomanana, Jean Bernoulli, Stefankovič, Daniel; Vigoda, Eric (2022): Metastability of the potts ferromagnet on random regular graphs. math.PR, arXiv:2202.05777v1 |
HeBIS-PPN: | 498572374 |
Institutes: | Informatik und Mathematik |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik | |
Sammlungen: | Universitätspublikationen |
Licence (German): | Deutsches Urheberrecht |