Physiologically based population pharmacokinetic/pharmacodynamic modeling and simulation approaches to support waivers of in vivo clinical pharmacology studies
- Intrinsische und extrinsische Faktoren wie die Darreichungsform, Komedikation und genetische Polymorphismen können einen signifikanten Einfluss auf die Exposition des Wirkstoffes haben und in der Folge zu Veränderungen in der Wirksamkeit oder Sicherheit eines Wirkstoffes führen. Die Fähigkeit die Auswirkungen solcher Faktoren auf die Exposition und die pharmakologische Aktivität eines Wirkstoffes zu quantifizieren und zu extrapolieren, repräsentiert einen Meilenstein bei der Bestimmung der erforderlichen Dosisanpassungen und der Umsetzung von Risikomanagementstrategien in der klinischen Pharmakologie. Unter dem Blickwinkel der modellbasierten Arzneimittelforschung und -entwicklung (engl. model-informed drug discovery and development (MID3)) können dynamisch mechanistische Modelle, wie z. B. whole-body PBPK/PD-Modelle, für die Vorhersage des Effekts sowie der Wechselwirkung mehrerer Faktoren auf PK und PD nützlich sein und könnten daher als Orientierung für die Wahl der Formulierung und für klinische Dosierungsempfehlungen dienen. Obwohl PBPK-Modelle in der Pharmabranche inzwischen routinemäßig zur internen Entscheidungsfindung und zur Unterstützung der regulatorischen Bewertung eingesetzt werden, bleibt das Vertrauen Waiver von speziellen klinischen pharmakologischen Studien für biopharmazeutische Anwendungen durch PBPK- Modellanalysen zu stützen eher gering. Andererseits hat sich die virtuelle Bioäquivalenz im Zusammenhang mit der Simulation klinischer Studien als ein vielversprechendes, aber noch unterentwickeltes Feld erwiesen, mit dessen Hilfe der Anwendungsbereich der PBPK-Modellierung in der Biopharmazeutik erweitert werden kann. So werden beispielsweise BCS-basierte Biowaiver für Wirkstoffe der BCS-Klassen II und IV derzeit von den Gesundheitsbehörden nicht akzeptiert. In einigen Fällen hat die PBPK-Modellierung durch Verknüpfung der In-vitro-Freisetzung mit der In-vivo-Performance der Formulierung jedoch gezeigt, dass ein solcher Ansatz unter Umständen wissenschaftlich gerechtfertigt sein könnte. Auf ähnliche Weise können PBPK-Modellierung und VBE verwendet werden, um klinisch relevante Spezifikationen für die Wirkstofffreisetzung festzulegen und den "safe space" der Freisetzung zu definieren (oder zu erweitern). Doch selbst bei Wirkstoffen, die Unterschiede im Umfang und in der Rate der Absorption außerhalb der Bioäquivalenzgrenzen aufweisen, was bedeutet, dass sie nicht als bioäquivalent und damit austauschbar angesehen werden können, kann die therapeutische Äquivalenz beibehalten werden, sofern dies durch eine Expositions-Wirkungs-Analyse und/oder eine Expositions-Sicherheits-Analyse unter Verwendung empirischer, halb- oder vollmechanistischer PK/PD-Modelle angemessen begründet wird. Wie bereits erwähnt bieten PK/PD- und insbesondere PBPK/PD-Modelle einen mechanistischen Ansatz, der die Gewebekonzentrationen am Wirkort des Wirkstoffes mit der pharmakologischen Wirkung verknüpft. Im Rahmen dieser Arbeit wird zunächst ein Überblick über bestehende PK/PD-Modelle und deren mathematischen Umsetzung vorgestellt. Darüber hinaus sind wirkstoffspezifische Fallbeispiele mit einer offensichtlichen Entkopplung von PK und PD von besonderem Interesse, bei denen Expositionsschwankungen weniger kritisch, wenn nicht gar irrelevant für die pharmakologische Reaktion sind (Publikation 1). In diesem Zusammenhang bietet PBPK Modellierung und Simulation die Möglichkeit die oben genannten wissenschaftlichen Überlegungen zu untersuchen, ungetestete Szenarios zu erforschen und schließlich evidenzbasiert und arzneimittelspezifische Empfehlungen für Bioäquivalenzprüfungen zu erteilen. Daher bestand das Hauptziel darin PBPK/PD-Modelle zu entwicklen, zu validieren und anzuwenden sowie virtuelle Trials zu simulieren, um den relativen Effekt der In-vitro/ In-vivo-Freisetzung, PK-Charakteristiken (z.b. die Halbwertszeit) und die intraindividuelle Variabilität bei der In-vivo-Arnzeimittelwirkung von BCS Klasse II schwach sauren Verbindungen zu beurteilen und einen PBPK-IVIVE integrierten Arbeitsablauf vorzuschlagen, um virtuelle Bioäquivalenzstudien durchzuführen. Es wurden drei BCS Klasse II schwach saure Wirkstoffe (Naproxen, Flurbiprofen, Ibuprofen) mit ähnlicher Disposition und ähnlichen metabolischen Eigenschaften zur Untersuchung ausgewählt. Allgemein sind alle drei Wirkstoffe stark an Plasmaproteine gebunden und haben daher ein niedriges Verteilungsvolumen, niedrigen First-Pass-Effekt, niedrige systemische Clearance und eine nahezu vollständige Bioverfügbarkeit (F>0.9). Allerdings unterscheiden sie sich signifikant in ihrer Halbwertszeit: Für Naproxen beträgt t1/2≃20-24 h, für Flurbiprofen t1/2≃7 h und für Ibuprofen t1/2≃2 h, was moderate bis lange, moderate und kurze Halbwertszeiten widerspiegelt. Für alle drei Wirkstoffe wurde ein systematischer Arbeitsablauf erstellt einschließlich: i) Charakterisierung von in vitro biopharmazeutischen Eigenschaften (z.b. Löslichkeit, Freisetzung) gefolgt von modellbasierten Analysen von In-vitro-Ergebnissen, ii) Entwicklung und umfassende Validierung von PBPK/PD-Modellen und iii) Simulierung und Risikoeinschätzung von Bioäquivalenzstudien. Die Fallstudien von Naproxen (Publikation 2) und Ibuprofen (Publikation 3) konzentrieren sich auf bewährte Verfahren der IVIVE für biopharmazeutische Parameter, Risikoabschätzung und Simulation von Bioäquivalenzstudien mit PBPK-Modellen, welche die inter-occasion Variabilität miteinbeziehen. Das Beispiel von Flurbiprofen (Publikation 4) hebt die Wichtigkeit des Verständnisses des relativen Einflusses von intrinsischen (z.b. genetische Polymorphismen) und extrinsischen (z.b. Komedikationen) Faktoren auf die PK und PD des Wirkstoffes hervor, wenn Empfehlungen für die Bioäquivalenz und die therapeutische Gleichwertigkeit gemacht werden. Alle drei Fallbeispiele liefern mechanistische Erkenntnisse über die Freisetzungssgrenzen, die für die In-vivo-Arneimittelwirksamkeit kritisch ist, unter Berücksichtigung der PK-Eigenschaften des Wirkstoffes und der physiologischen Variabilität mit dem Ziel den Status quo des aktuellen BCS-basierten Biowaiveransatzes in Frage zu stellen und integrierte In-vitro-, In-vivo- und In-silico-Paradigma der Risikobewertung für Waiver von In-vivo-Bioäquivalenzstudien einzuführen. In dem letzten Teil der Arbeit werden Herausforderungen, Kenntnislücken und Möglichkeiten von PBPK/PD-Modellierung zur Unterstützung von Waivern von in vivo klinischen Studien im Bereich von oralen Biopharmazeutika diskutiert (Publikation 5). Im Großen und Ganzen schlägt diese Dissertation biorelevante In-vitro-Methoden für die Vorhersage von In-vivo-Formulierungsperformance und neue PBPK/PD-Methoden vor, um Daten von in vitro biopharmazeutischen Experimenten zu den In-vivo-Bedingungen zu extrapolieren. Außerdem ist dies das erste Mal nach unserem Kenntnisstand, dass PBPK/PD-Ansätze zur Durchführung virtueller Bioäquivalenzstudien vorgeschlagen werden, die auch die inter-occasion Variabilität der Pharmakokinetik berücksichtigen. Desweiteren hebt diese Arbeit die Bedeutung von pharmakokinetischen Eigenschaften auf Bioäquivalenz-Ergebnissen hervor und stellt ein neues Konzept zur Risikoeinschätzung von Bioäquivalenz vor, in welchem die Bewertung des Bedarfs eines Waivers von einer In-vivo-Bioäquivalenzstudie sowohl auf biopharmazeutischen als auch pharmakokinetischen Wirkstoffeigenschaften basiert und quantitativ mit PBPK/PD-Modellierung bewertet wird.
Author: | Ioannis Loisios-KonstantinidisORCiDGND |
---|---|
URN: | urn:nbn:de:hebis:30:3-707896 |
DOI: | https://doi.org/10.21248/gups.70789 |
Place of publication: | Frankfurt am Main |
Referee: | Jennifer B. DressmanGND, Rodrigo CristofolettiGND |
Document Type: | Doctoral Thesis |
Language: | English |
Date of Publication (online): | 2022/11/08 |
Year of first Publication: | 2021 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Granting Institution: | Johann Wolfgang Goethe-Universität |
Date of final exam: | 2022/09/08 |
Release Date: | 2022/12/05 |
Tag: | pharmacokinetics |
Page Number: | 281 |
Note: | Kumulative Dissertation - enthält die Verlagsversionen (Versions of Record) der folgenden Artikel: Loisios-Konstantinidis, Ioannis; Paraiso Rafael L. M.; Fotaki, Nikoletta; McAllister, Mark; Cristofoletti, Rodrigo; Dressman, Jennifer (2019): Application of the relationship between pharmacokinetics and pharmacodynamics in drug development and therapeutic equivalence: a PEARRL review. Journal of pharmacy and pharmacology, 71(4):699-723, ISSN 2042-7158. DOI: 10.1111/jphp.13070 Loisios-Konstantinidis, Ioannis; Cristofoletti, Rodrigo; Fotaki, Nikoletta; Turner, David B.; Dressman, Jennifer (2020): Establishing virtual bioequivalence and clinically relevant specifications using in vitro biorelevant dissolution testing and physiologically-based population pharmacokinetic modeling. case example: Naproxen. European journal of pharmaceutical sciences, 15;143:105170, ISSN 1879-0720. DOI: 10.1016/j.ejps.2019.105170 Loisios-Konstantinidis, Ioannis; Hens, Bart; Mitra, Amitava; Kim, Sarah; Chiann, Chiang; Cristofoletti, Rodrigo (2020): Using physiologically based pharmacokinetic modeling to assess the risks of failing bioequivalence criteria: a tale of two Ibuprofen products. The AAPS journal 23;22(5):113, ISSN 1550-7416. DOI: 10.1208/s12248-020-00495-4 Loisios-Konstantinidis, Ioannis; Cristofoletti, Rodrigo; Jamei, Masoud; Turner, David; Dressman, Jennifer (2020): Physiologically based pharmacokinetic/pharmacodynamic modeling to predict the impact of CYP2C9 genetic polymorphisms, co-medication and formulation on the pharmacokinetics and pharmacodynamics of flurbiprofen. Pharmaceutics 2;12(11):1049, ISSN 1999-4923. DOI: 10.3390/pharmaceutics12111049 Reprinted with permission from Loisios-Konstantinidis, Ioannis; Dressman, Jennifer (2021): Physiologically based pharmacokinetic/pharmacodynamic modeling to support waivers of in vivo clinical studies: current status, challenges, and opportunities. Molecular pharmaceutics 4;18(1):1-17, ISSN 1543-8392. DOI: 10.1021/acs.molpharmaceut.0c00903 Copyright 2021, American Chemical Society |
HeBIS-PPN: | 50227204X |
Institutes: | Biochemie, Chemie und Pharmazie |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften |
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit | |
Sammlungen: | Universitätspublikationen |
Licence (German): | Deutsches Urheberrecht |