Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes
- For the linearized reconstruction problem in electrical impedance tomography with the complete electrode model, Lechleiter and Rieder (2008 Inverse Problems 24 065009) have shown that a piecewise polynomial conductivity on a fixed partition is uniquely determined if enough electrodes are being used. We extend their result to the full non-linear case and show that measurements on a sufficiently high number of electrodes uniquely determine a conductivity in any finite-dimensional subset of piecewise-analytic functions. We also prove Lipschitz stability, and derive analogue results for the continuum model, where finitely many measurements determine a finite-dimensional Galerkin projection of the Neumann-to-Dirichlet operator on a boundary part.