Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes

  • For the linearized reconstruction problem in electrical impedance tomography with the complete electrode model, Lechleiter and Rieder (2008 Inverse Problems 24 065009) have shown that a piecewise polynomial conductivity on a fixed partition is uniquely determined if enough electrodes are being used. We extend their result to the full non-linear case and show that measurements on a sufficiently high number of electrodes uniquely determine a conductivity in any finite-dimensional subset of piecewise-analytic functions. We also prove Lipschitz stability, and derive analogue results for the continuum model, where finitely many measurements determine a finite-dimensional Galerkin projection of the Neumann-to-Dirichlet operator on a boundary part.

Download full text files

Export metadata

Metadaten
Author:Bastian von HarrachORCiDGND
URN:urn:nbn:de:hebis:30:3-716613
DOI:https://doi.org/10.1088/1361-6420/aaf6fc
ISSN:0266-5611
Parent Title (English):Inverse problems
Publisher:Institute of Physics
Place of publication:Bristol [u.a.]
Document Type:Article
Language:English
Date of Publication (online):2019/01/03
Date of first Publication:2019/01/03
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2023/01/26
Volume:35
Issue:024005
Page Number:19
HeBIS-PPN:507153960
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International