Topological data analysis to uncover the shape of immune responses during co-infection

  • Abstract Co-infections by multiple pathogens have important implications in many aspects of health, epidemiology and evolution. However, how to disentangle the contributing factors of the immune response when two infections take place at the same time is largely unexplored. Using data sets of the immune response during influenza-pneumococcal co-infection in mice, we employ here topological data analysis to simplify and visualise high dimensional data sets. We identified persistent shapes of the simplicial complexes of the data in the three infection scenarios: single viral infection, single bacterial infection, and co-infection. The immune response was found to be distinct for each of the infection scenarios and we uncovered that the immune response during the co-infection has three phases and two transition points. During the first phase, its dynamics is inherited from its response to the primary (viral) infection. The immune response has an early (few hours post co-infection) and then modulates its response to finally react against the secondary (bacterial) infection. Between 18 to 26 hours post co-infection the nature of the immune response changes again and does no longer resembles either of the single infection scenarios. Author summary The mapper algorithm is a topological data analysis technique used for the qualitative analysis, simplification and visualisation of high dimensional data sets. It generates a low-dimensional image that captures topological and geometric information of the data set in high dimensional space, which can highlight groups of data points of interest and can guide further analysis and quantification. To understand how the immune system evolves during the co-infection between viruses and bacteria, and the role of specific cytokines as contributing factors for these severe infections, we use Topological Data Analysis (TDA) along with an extensive semi-unsupervised parameter value grid search, and k-nearest neighbour analysis. We find persistent shapes of the data in the three infection scenarios, single viral and bacterial infections and co-infection. The immune response is shown to be distinct for each of the infections scenarios and we uncover that the immune response during the co-infection has three phases and two transition points, a previously unknown property regarding the dynamics of the immune response during co-infection.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Karin Sasaki, Dunja BruderGND, Esteban A. Hernández-VargasORCiDGND
Parent Title (English):bioRxiv
Document Type:Preprint
Date of Publication (online):2019/08/05
Date of first Publication:2019/08/05
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2023/04/20
Page Number:15
Institutes:Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International