Categories of abelian varieties over finite fields II: Abelian varieties over Fq and Morita equivalence
- The category of abelian varieties over Fq is shown to be anti-equivalent to a category of Z-lattices that are modules for a non-commutative pro-ring of endomorphisms of a suitably chosen direct system of abelian varieties over Fq. On full subcategories cut out by a finite set w of conjugacy classes of Weil q-numbers, the anti-equivalence is represented by what we call w-locally projective abelian varieties.
Author: | Tommaso Giorgio CentelegheGND, Jakob StixGND |
---|---|
URN: | urn:nbn:de:hebis:30:3-842727 |
DOI: | https://doi.org/10.1007/s11856-023-2536-2 |
ISSN: | 1565-8511 |
ArXiv Id: | http://arxiv.org/abs/2112.14306 |
Parent Title (English): | Israel Journal of Mathematics |
Publisher: | Springer |
Place of publication: | Berlin ; Heidelberg |
Document Type: | Article |
Language: | English |
Date of Publication (online): | 2023/12/22 |
Date of first Publication: | 2023/12/22 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Release Date: | 2024/07/16 |
Volume: | 257 |
Issue: | 1 |
Page Number: | 68 |
First Page: | 103 |
Last Page: | 170 |
HeBIS-PPN: | 520871669 |
Institutes: | Informatik und Mathematik / Mathematik |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Sammlungen: | Universitätspublikationen |
Licence (German): | Creative Commons - CC BY - Namensnennung 4.0 International |