• Treffer 1 von 2
Zurück zur Trefferliste

Inhibierung des pathomolekularen Mechanismus einer t(4;11)-assoziierten Leukämie

  • Taspase1 stellt die bisher einzige Typ2-Asparaginase mit proteolytischer Aktivität dar. Das wichtigste Substrat der Taspase1 ist das MLL-Protein, einem Homolog des Trithorax- Proteins aus Drosophila melanogaster, das auch dort eine wichtige Rolle bei Differenzierungsprozessen spielt. Bei Patienten mit einer t(4;11)-Translokation ist Taspase1 maßgeblich an der Ausbildung einer t(4;11)-assoziierten Leukämie beteiligt. Die Inhibierung der proteolytischen Aktivität der Taspase1 könnte daher einen Ansatzpunkt für eine neuartige Krebstherapie darstellen. Aufgrund der ungewöhnlichen Eigenschaften von Taspase1 ist es bisher nicht gelungen einen selektiven Inhibitor für das katalytische Zentrum der Taspase1 zu identifizieren. Unter nativen Bedingungen (ca. 50 mM NaCl) befindet sich Taspase1 bereits in einem nahezu vollständig inhibierten Zustand, da im katalytischen Zentrum der Taspase1 ein Chloridion komplexiert ist. Dieses Chloridion wird einzig und allein nach Interaktion mit dem natürlichen Substrat MLL aus dem katalytischen Zentrum verdrängt, was zu einer kurzfristigen Aktivierung der Taspase1 führt. Nach Ablauf der hydrolytischen Spaltung des Substrates nimmt das Chloridion wieder seine Position im katalytischen Zentrum ein. Unter diesen Bedingungen ist aus sterischen Gründen die Bindung eines potentiellen Inhibitors im katalytischen Zentrum nicht möglich. Durch Herstellung von Mutanten der Taspase1 und deren Substrats konnte der Mechanismus der katalytischen Spaltung durch Taspase1 aufgeklärt werden. Dabei erwiesen sich drei Aminoäuren als essentiell für die Hydrolyse. Interessanterweise ist die Anwesenheit des Substrates, insbesondere des Aspartates an Position Sieben der cleavage sites CS1 bzw. CS2 notwendig um den katalytischen Prozess zu starten. Das negativ geladene Aspartat, verdrängt zunächst das Chloridion von seiner Position und aktiviert dadurch das katalytische Zentrum (Rotation von Threonin 234). Erst dadurch wird Threonin 234 zu einer katalytisch aktiven Aminosäure und kann einen nukleophilen Angriff auf die Peptidbindung zwischen Aspartat und Glycin des Substrates durchführen. Die Hydrolyse wird dabei durch die OH-Gruppe des Serins 252 durch Wechselwirkung mit dem Carboxylsauerstoff unterstützt. Durch Mutation beider Aspartate an Position sieben im artifiziellen Substrat 2CL zu Glycin oder Lysin führte zu einem vollständigen Verlust der hydrolytischen Spaltung an CS1 und zu einem starken Rückgang der hydrolytischen Spaltung an CS2. Die Mutationen T234D und S252D der Taspase1 führten beide zum vollständigen Verlust der katalytischen Spaltung, sowohl in cis, als auch in trans. Unter Verwendung des Taspase1-Aktivitätsassays konnte der transkriptionelle Regulator MLL4 als potentielles Substrat der Taspase1 identifiziert werden.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Jens Rabenstein
URN:urn:nbn:de:hebis:30-62476
Gutachter*in:Rolf MarschalekORCiDGND
Dokumentart:Dissertation
Sprache:Deutsch
Datum der Veröffentlichung (online):18.02.2009
Jahr der Erstveröffentlichung:2008
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Abschlussprüfung:22.01.2009
Datum der Freischaltung:18.02.2009
HeBIS-PPN:209276487
Institute:Biochemie, Chemie und Pharmazie / Pharmazie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Lizenz (Deutsch):License LogoDeutsches Urheberrecht