• search hit 1 of 3
Back to Result List

High-precision nanotools for in situ photo patterning of biomolecules in 2D and 3D

  • The specific and precise arrangement of proteins and biomolecules in 3D is an important prerequisite for the study of cell migration, cellular signal transduction and the production of artificial tissue. In a variety of research approaches, proteins have been immobilized on rigid surfaces such as glass or gold to observe protein-protein or protein-cell interactions. While these commonly used analytical platforms offer advantages such as rapid washing steps and easy use, due to their rigidity and two-dimensionality, they cannot replicate the extracellular matrix (ECM) the native environment of cells. This severe deviation from the natural environment results in significant changes in cell structure and cellular processes such as the polarization of the cell, its morphology, and signal transduction. In order to maintain the functionality of the immobilized proteins, it is also enormously important that the proteins are oriented and anchored in the material under mild conditions. An immobilization strategy that makes this possible is bioaffinity. For this, the specific interaction of a biomolecule with an interaction partner anchored on a surface is used to immobilize the biomolecule. Such an interaction is for example the nitrilotriacetic acid (NTA)/His-tag binding. NTA is a chelator molecule that, when bound to divalent metal ions such as Ni(II), forms an octahedral complex with oligohistidines. The oligo histidine-tag can be competed out of the complex by free histidine or imidazole due to structural similarity. This is exploited in immobilized metal affinity chromatography (IMAC). The binding of a monoNTA/His-tag complex (KD=10 µM) is not stable enough to be used for immobilizations. Therefore, multivalent variants of the chelator were developed, like trisNTA which has a high affinity for His6 tagged proteins (KD= 10 nM). The PA-trisNTA developed in a preliminary work was the first light-activatable system based on the trisNTA chelator head. The aim of this work was to synthesize a new two-photon (2P) activatable trisNTA (TPA trisNTA) interaction molecule, to analyze its photophysical characteristics and to apply it for two- and three dimensional (2D/3D) biomolecule patterning. The final goal was to use TPA trisNTA for cellular applications in order to manipulate membrane protein organization. Therefore, TPA trisNTA was designed to maintain a stable autoinhibition enabling the immobilization of proteins under physiological conditions with high precision in the x/y, as well as z dimension only upon light activation. 2P activation brings some outstanding advantages: i) the use of near-infrared (NIR) light is less harmful to cells compared to ultraviolet (UV) light, ii) the longer wavelength allows the radiation to penetrate deeper into tissues, iii) the precision of focal irradiation is more accurate because only a focal volume (about 1 fL) is excited and, unlike UV light, scattered light does not lead to activation. Several backbones for TPA-trisNTA were considered as 2P cleavable groups due to their 2P absorption ability and small size: 3 nitrodibenzofuran (NDBF), 6 bromo 7 hydroxycoumarin (Bhc), and 7 diethylaminocoumarin (DEAC). Initially, suitable synthetic routes were developed for the respective carbaldehydes, since these represented an important intermediate for both the construction of amino acid (aa) derivatives as well as ß hydroxy acids. ß Hydroxy acids were important intermediates because their photocleavage differs from aa derivatives. To establish the conversion from carbaldehydes to hydroxy acids via Reformatsky reaction, commercially available carbaldehydes of the nitroveratral (NV) or nitropiperonal (NP) group were used in addition. The conversion of NDBF, NV, NP proved to be difficult, whereas the ß-hydroxy acid was successfully synthesized from Bhc as well as from DEAC. Starting from DEAC ß hydroxy acid, a Fmoc protected amino acid derivative was synthesized. To ensure high cleavage efficiency, the DEAC ß hydroxy acid was linked to monoFmoc ethylenediamine through a carbamate linker. Subsequently, the photocleavable group was successfully incorporated into the linker of TPA-trisNTA by solid-phase peptide synthesis (SPPS). The functional principle of TPA-trisNTA, similar to PA-trisNTA, is based on the autoinhibition of the multivalent chelator head trisNTA, which is linked to an intramolecular oligohistidine sequence by a peptide linker. In presence of Ni(II) ions, trisNTA forms a metal ion-mediated complex with histidine, causing TPA-trisNTA to self-inactivate. The cleavage site is the DEAC based photocleavable amino acid. In contrast to PA-trisNTA, the incorporation of two photocleavable amino acids was omitted. Instead, only one photocleavable DEAC was incorporated in front of the His tag. To avoid a second DEAC group within the His tag, a His5 tag was used instead of an His6 tag. It is known from preliminary work that a His5 tag is sufficient to maintain autoinhibition in the presence of His6-tagged proteins of interest (POIs), but can be displaced from the complex after light-driven cleavage of the peptide backbone. Placement of a cysteine in the peptide linker between the trisNTA and the DEAC group allowed for permanent surface anchoring after photocleavage of the linker. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Heike KrügerGND
URN:urn:nbn:de:hebis:30:3-675516
DOI:https://doi.org/10.21248/gups.67551
Place of publication:Frankfurt am Main
Referee:Ralph WienekeORCiDGND, Robert TampéORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2022/03/24
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/03/03
Release Date:2022/04/20
Page Number:166
Last Page:166
HeBIS-PPN:493384812
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht