• Treffer 8 von 22
Zurück zur Trefferliste

Zeitaufgelöste Untersuchung der Kopplung von Bloch- und Zyklotron-Oszillationen in Halbleiterübergittern

  • In der vorliegenden Arbeit wird die Kopplung von Bloch- und Zyklotron-Oszillationen in Halbleiterübergittern unter dem Einfluss eines elektrischen und magnetischen Feldes zeitaufgelöst-elektro-optisch untersucht. Hierbei hängen sowohl die Stärke der Bloch-Zyklotron-Kopplung als auch die Charakteristika der kohärenten Ladungsträgerbewegung sensitiv von der relativen Anordnung der äußeren Felder ab. Bei gekreuzter Feldanordnung wird der Kohärente Hall-Effekt beobachtet. Semiklassisch lässt sich die Ladungsträgerdynamik in diesem Fall mit der Bewegungsgleichung eines nicht getriebenen, ungedämpften Pendels beschreiben. Abhängig vom Verhältnis E/B der äußeren Feldstärken lassen sich zwei Bewegungsregime mit gegensätzlicher Feldabhängigkeit der Frequenz der Ladungsträgeroszillationen unterscheiden. Bei schiefer Feldanordnung kommt es durch die nichtlineare Kopplung der Bloch-Oszillation mit der Zyklotron-Oszillation in der Übergitterebene zu einer phasenempfindlichen Gleichrichtung der transienten Oszillationen entlang der Wachstumsrichtung, wobei man in Resonanz eine Überhöhung dieses selbstinduzierten Gleichstroms beobachtet. In Anlehnung an ein analoges Phänomen, das an Josephson-Kontakten beobachtet wird, sprechen wir hierbei vom Fiske-Effekt. Für die räumliche Auslenkung X("unendlich") entlang der Wachstumsrichtung nach Abklingen der Kohärenz kann im Rahmen einer analytischen semiklassischen Näherung ein geschlossener Ausdruck angegeben werden. Die zeitaufgelösten Experimente zur Bloch-Zyklotron-Kopplung werden an zwei GaAs/Al0,3Ga0,7As-Übergitterstrukturen mit unterschiedlicher Quantentopfbreite durchgeführt. Im Spezialfall der gekreuzten Feldanordnung wird der Kohärente Hall-Effekt anhand der Existenz zweier Bewegungsregime mit ihrem charakteristischen Frequenz- und Dephasierungsverhalten in Abhängigkeit der äußeren Felder nachgewiesen und die lineare Abhängigkeit des Magnetfeldes am Übergang zwischen den Bewegungsregimen vom elektrischen Feld gezeigt. Die gleichermaßen prognostizierte Zunahme der Intensität höherer harmonischer Moden der Ladungsträgeroszillationen in der Nähe des Übergangs wird jedoch in der elektro-optischen Respons nicht beobachtet, wenngleich die verwendeten elektro-optischen Messtechniken im Vergleich zur Terahertz-Emissionsspektroskopie zur Untersuchung des Übergangsbereichs und höher frequenter Oszillationen prinzipiell besser geeignet sein sollten. Hierbei bestehende Einschränkungen werden diskutiert. Der für den Fall der schiefen Feldanordnung vorhergesagte selbstinduzierte Gleichstrom manifestiert sich experimentell in einem resonanzartigen Verlauf des elektro-optischen Signals nach Abklingen der Oszillationen in Abhängigkeit des Magnetfeldes. Durch Vergleich mit dem analytisch hergeleiteten Ausdruck für die räumliche Auslenkung lassen sich hieraus die relevanten Dämpfungskonstanten abschätzen und durch iterative Anpassung bestimmen. Die bei schiefer Feldanordnung mittels elektro-optischer Spektroskopie gemessenen Signale weisen nach Abklingen der kohärenten Ladungsträgeroszillationen nur einen sehr schwachen Driftanteil auf. Eine schlüssige Erklärung für diese Beobachtung ergibt sich, wenn bei der Behandlung der Ladungsträgerdynamik die Impuls- und Energierelaxation des Bloch-Oszillators unterschieden werden und eine sehr kleine Energiedämpfung angenommen wird.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Anne Beate Hummel
URN:urn:nbn:de:hebis:30-30142
Gutachter*in:Hartmut RoskosORCiDGND
Dokumentart:Dissertation
Sprache:Deutsch
Datum der Veröffentlichung (online):13.07.2006
Jahr der Erstveröffentlichung:2006
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Abschlussprüfung:30.06.2006
Datum der Freischaltung:13.07.2006
HeBIS-PPN:179521195
Institute:Physik / Physik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Lizenz (Deutsch):License LogoDeutsches Urheberrecht