The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 528
Back to Result List

Stable and flexible representations in mouse mPFC across different behaviors

  • The prefrontal cortex (PFC) is considered the cognitive center of the mammalian brain. It is involved in a variety of cognitive functions such as decision making, working memory, goal-directed behavior, processing of emotions, flexible action selection, attention, and others (Fuster, 2015). In rodents, these functions are associated with the medial prefrontal cortex (mPFC). Experiments in mice and rats have shown that neurons in the mPFC are necessary for successful performance of many cognitive tasks. Moreover, measurements of neural activity in the mPFC show excitation or inhibition in different cells in relation to specific aspects of the tasks to be solved. To date, however, it is largely unknown whether prefrontal neurons are stably activated during the same behaviors within a task and whether similar aspects are represented by the same neurons in different tasks. In addition, it is unclear how specifically neurons are activated, for example, whether cells that are activated in response to reward are activated in a different task without reward in a different situation or remain inactive. To address these questions, we recorded the same neurons in the mPFC of mice over the course of several weeks while the animals performed various behaviors. To do this, we expressed GCaMP6 in pyramidal neurons in the mPFC of mice. A small lens was implanted in the same location and a miniature microscope ("miniscope") was used to record neural activity. Later the extracted neurons got aligned based on their shape and position across multiple days and sessions. The mice performed five different behavioral tests while neural activity was measured: A spatial working memory test in a T-maze, exploration of the elevated plus maze (EPM), a novel object recognition (NO) test including free open field (OF) exploration, a social interaction (SI) test and discriminatory auditory fear conditioning (FC). Each task was repeated at least twice to check for stable task encoding across sessions. Behavioral performance and neural correlates to specific task events were similar to earlier studies across all tasks. We utilized generalized linear models (GLM) to determine which behavioral variables most strongly influence neural activity in the mPFC. The position of the mouse in the environment was found to explain most of the variance in neural activity, together with movement speed they were the strongest predictors of neural activity across all tasks. Reward time points in the working memory test, the conditioned stimulus after fear conditioning, or head direction in general were also strongly encoded in the mPFC. Many of the recorded neurons showed a stable spatial activity profile across multiple sessions of the same task. Similarly, cells that coded for position in one task tended to code for position in other tasks. Not only did the same cells code for position across multiple tasks, but cells also coded for movement speed and head direction. This indicates that at least these general behavioral variables are each represented by the same neurons in the mPFC. Interestingly, the stability of position or speed coding did not depend on the time between two sessions, but only on whether it was within the same or across different tasks. Within the same task, stability was slightly higher than across different tasks. To find out whether task-specific behavioral aspects were also stably encoded in the mPFC, difference scores as the difference in neural activity between two task aspects like left- and right-choice trials or exposed and enclosed locations were calculated. Many cells encoded these aspects stably across different sessions of each task. Both the left-right differences in the different phases of the working memory test, the open-closed-arm differences in the elevated plus maze, the different activity between center and corners in the open field, the social target-object differences in the social interaction test, and the differences between the two tones during fear conditioning were all stably encoded across the population of mPFC cells. Only the distinction between the novel and the familiar object during object recognition was not stably encoded, but also the preference for the novel object was not present in the second session of novel object exploration. There was also an overlap in coding for different aspects within a task across multiple sessions. For example, cells stably encoded left-right differences in the T-maze between different sessions as a function of walking direction across different phases of working memory, an aspect that we could already show within one session (Vogel, Hahn et al., 2022). During fear conditioning, the same cells showed a discrimination between CS+ and CS- that also responded to the start of CS+. Consistency in the neurons activity across different tasks was also found, but only between tasks with similar demands, the elevated plus-maze and free exploration of the open field. Cells that were more active in the open arms also showed more activity in the center of the open field and vice versa. This could be an indicator that the cells were coding for anxiety or exposure across those tasks, indicating that neurons in the mPFC also stably encode general task aspects independent of the specific environment. However, it remains unclear what exactly these neurons encode; in the case of a general fear signal, one would also expect activation during fear conditioning which could not be found. Overall, we found that neurons in the mPFC of mice encoded multiple general behavioral variables across multiple tasks and task-specific variables were encoded stably within each of the tested tasks. However, we found little task-specific variables that were systematically encoded by the same neurons with the exception being the elevated plus-maze and open field exploration, two tasks with similar features.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Johannes HahnORCiDGND
URN:urn:nbn:de:hebis:30:3-856855
DOI:https://doi.org/10.21248/gups.85685
Place of publication:Frankfurt am Main
Referee:Manfred KösslORCiD, Jochen RoeperORCiD
Advisor:Torfi Sigurdsson
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/05/27
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2024/05/08
Release Date:2024/05/27
Tag:mPFC
Page Number:124
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht