Pharmacological investigations on muscarinic and P2 receptor subtypes : pharmacological charakterisation of the stereoisomers of glycopyrronium bromide and their tertiary analogues and evaluation of the isolated guinea-pig and rat ileal longitudinal

  • Die Beschäftigung mit Muskarinrezeptoren reicht bis in das vergangene Jahrhundert zurück als, in Folge der verschiedenen Wirkungen des Neurotransmitters Acetylcholin, einerseits Nikotin- und andererseits Muskarinrezeptoren sowie deren Subtypen entdeckt und charakterisiert werden konnten. Aufgrund der weiten Verbreitung von Muskarinrezeptoren innerhalb des zentralen und peripheren Nervensystems sowie in entsprechend innervierten Organen sind diese nach wie vor als Target für bestimmte klinische Indikationen von großem Interesse. Besonders im Bereich der chronisch obstruktiven Atemwegserkrankungen (COPD) sind Bronchodilatoren Mittel der Wahl. Obwohl die derzeitige Behandlungsstrategie im wesentlichen auf dem Einsatz des unselektiven muskarinischen Antagonisten Ipratropiumbromid, allein oder in Kombination mit einem kurzwirksamen b2-Sympathomimetikum, beruht, ist ihr Einsatz aufgrund der dabei auftretenden unerwünschten Nebenwirkungen limitiert. Neben M3- Rezeptoren findet man in der menschlichen Lunge auch präsynaptische M2- Rezeptoren, deren Blockade zu einem Anstieg der Acetylcholinfreisetzung führt. Demzufolge würde die Entwicklung eines hochselektiven und/oder langwirksamen muskarinischen M3-Rezeptorantagonisten einen großen Fortschritt für die Behandlung von Patienten mit COPD und auch Asthma bedeuten. Untersuchung der Stereoisomere des Glycopyrroniumbromids und der entsprechenden tertiären Analoga: Im Rahmen der vorliegenden Arbeit wurden sowohl die vier reinen Stereoisomere des Glycopyrroniumbromids als auch die entsprechenden vier tertiären Analoga untersucht. Bislang wird das Diastereomerengemisch (RS/SR), das als RobinulÒ im Handel ist, vorwiegend als Antisialagogum in der Prämedikation der Narkose oder als Spasmolytikum therapeutisch eingesetzt. Die molekulare Struktur des Glycopyrroniumbromids weist zwei Chiralitätszentren auf, woraus sich vier stereoisomere Verbindungen ergeben. Die pharmakologische Untersuchung sowohl der quartären als auch der korrespondierenden tertiären Isomere in den funktionellen Standardmodellen, Kaninchen-Vas-deferens für M1-Rezeptoren, linker Vorhof des Meerschweinchenherzens für M2-Rezeptoren und die Längsmuskulatur des Meerschweinchenileum für M3-Rezeptoren, ergab, dass sich alle Verbindungen an den untersuchten Muskarinrezeptorsubtypen als potente Antagonisten verhielten. Ihre Rezeptorselektivität war jedoch relativ gering, wobei im Allgemeinen die niedrigste Affinität zum M2-Rezeptor beobachtet wurde. Innerhalb der Stereoisomeren zeigten die (R/R')- und (S/R')-konfigurierten Verbindungen den stärksten, die (S/S')-konfigurierten Isomere hingegen den geringsten antagonistischen Effekt. Diese Ergebnisse konnten durch Radioligand- Bindungsstudien bestätigt werden. Bemerkenswert war jedoch, dass insbesondere am M3-Rezeptor eine extrem langsame Dissoziation der Substanzen vom Rezeptor festgestellt wurde. Verbunden mit der hohen Affinität und der in Bindungsstudien ermittelten Dissoziationshalbwertszeit von 120 min könnte das quartäre (R/R')-konfigurierte Stereoisomer des Glycopyrroniumbromids eine geeignete Alternative zur Behandlung der COPD darstellen: Die lange Halbwertszeit sollte eine Einmalgabe pro Tag erlauben und somit die Patientencompliance erhöhen, die hohe Affinität eine geringe Dosierung ermöglichen und die kinetische Selektivität' sowie die quartäre Struktur könnten zur Minimierung unerwünschter Nebenwirkungen führen. Aufgrund dieser Vorteile wurde die Substanz patentiert und der pharmazeutischen Industrie für weiterführende Untersuchungen zur Verfügung gestellt. Untersuchungen an der Längsmuskulatur des Meerschweinchenileum in Hinblick auf die Verteilung von P2-Rezeptoren: Aufgrund der Pionierarbeit, die Ende der 70er Jahre von Burnstock und seinen Mitarbeitern geleistet wurde, wandelte sich das Bild von ATP als einer Energiequelle der Zelle zu einem Neurotransmitter ubiquitären Vorkommens mit entsprechenden Zielstrukturen, den P2-Rezeptoren. Inzwischen ist allgemein anerkannt, dass zwischen metabotropen P2Y-Rezeptoren und ionotropen P2X- Rezeptoren unterschieden werden kann. Mit Hilfe von Klonierungstechniken konnte diese Klassifizierung validiert und außerdem eine Vielzahl unterschiedlicher Subtypen identifiziert werden. Bis heute wurden sieben P2X- (P2X1-7) und sechs P2Y- Rezeptorsubtypen (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12) kloniert und pharmakologisch charakterisiert. Sie gelten unumstritten als Vertreter der P2-Rezeptorfamilie. Heute besteht eine der größten Herausforderungen auf diesem sich explosionsartig expandierendem Gebiet darin, die geklonten P2-Rezeptoren mit den verschiedenen physiologischen Antworten, die durch native P2-Rezeptoren vermittelt werden, in Einklang zu bringen. Da die Längsmuskulatur des Meerschweinchenileum ein bekanntes Modell, z.B. für Untersuchungen an Muskarinrezeptoren, darstellt, war das Ziel der vorliegenden Arbeit, dieses Modell in Bezug auf die Verteilung von P2-Rezeptoren hin zu untersuchen. Neben Agonisten, die eine Präferenz für entweder ionotrope (a,b-meATP) oder metabotrope (ADPbS) P2-Rezeptoren aufweisen, wurden im wesentlichen eine Reihe gut untersuchter Antagonisten mit zum Teil hoher Affinität für einen Rezeptorsubtyp für die funktionellen Untersuchungen verwendet. Die neuronale Lokalisation des P2X-Rezeptors konnte durch die komplette Aufhebung der durch a,b-meATP-vermittelten Kontraktionen nach Zugabe von TTX charakterisiert werden. Die ebenfalls fast vollständige Hemmung der Kontraktion nach Einsatz von Atropin wies auf einen indirekten, durch Acetylcholin vermittelten Effekt hin. Aufgrund dieser Beobachtungen wurden sämtliche Versuche mit P2-Antagonisten unter Zusatz von 70 µM Physostigmin in der Nährlösung durchgeführt. Die eingesetzten Antagonisten Suramin, NF023 und NF279 erwiesen sich als kompetitive Antagonisten, während PPADS neben der Rechtsverschiebung einen Maximumabfall der Agonistenkurven bewirkte. Ein Vergleich der funktionell ermittelten pA2-Werte mit den Wirkstärken an rekombinanten P2-Rezeptoren von Ratte und Mensch lässt vermuten, dass es sich hierbei um einen P2X3- Rezeptorsubtyp handelt, der über die Freisetzung von Acetylcholin eine Kontraktion der glatten Muskulatur über einen indirekten Mechanismus auslöst. Da sich P2X-Rezeptoruntereinheiten neben homomeren auch zu heteromeren, funktionell aktiven Kanälen vereinen können, könnte es sich bei dem vorliegenden soma-dendritischen P2X-Rezeptor aber auch um ein Heteromer handeln, bei dem der P2X3-Rezeptor den Phänotyp bestimmt. Solange noch keine eindeutige Identifizierung dieses Rezeptors speziesspezifisch auf molekularer Ebene erfolgt ist, sollte man deshalb die Bezeichnung P2X3(-ähnlicher)-Rezeptor verwenden. Es konnte gezeigt werden, dass eine Stimulation des präsynaptischen P2X3(- ähnlichen)-Rezeptors zur Ausschüttung von Acetylcholin führt, das wiederum postsynaptisch einen kontraktionsvermittelnden Muskarinrezeptor aktiviert. Um zu beweisen, dass es sich dabei um denselben Muskarinrezeptorsubtyp handelt, der bereits auf direktem Weg durch APE oder mittels EFS als M3-Rezeptor charakterisiert werden konnte, wurden die Affinitäten muskarinischer Antagonisten als Kriterien herangezogen. Die erhaltenen Korrelationen wiesen eindeutig darauf hin, dass dieser postsynaptisch im GPI lokalisierte Muskarinrezeptor dem nativen und rekombinanten, kontraktionsvermittelnden M3-Rezeptorsubtyp entspricht. Durch Zugabe von ADPbS konnten im GPI Kontraktionen ausgelöst werden, die allerdings mit TTX und Atropin nur zum Teil gehemmt wurden. Diese Beobachtungen führten zu der Erkenntnis, dass postsynaptisch P2Y-Rezeptoren lokalisiert sind. Ihre Subtypcharakterisierung erfolgte unter Zusatz von 0.3 µM Atropin in der Nährlösung, um den Einfluss der neuronalen P2X3-Rezeptoren zu unterbinden. Suramin, NF023 und NF279 zeigten wiederum einen kompetitiven Antagonismus gegen ADPbS, während PPADS auch hier eine Rechtsverschiebung mit Maximumdepression der Agonistenkurve hervorrief. Ein erneuter Vergleich mit beschriebenen Affinitätswerten von rekombinanten P2- Rezeptoren ließ den Schluss zu, dass der im GPI postsynaptisch gefundene P2Y- Rezeptor Eigenschaften des P2Y1-Rezeptorsubtyps aufweist. Eine Bestätigung dafür gaben außerdem die P2Y1-selektiven Bisphosphate A3P5P und MRS2179, obgleich sie geringere pIC50-Werte aufzeigten als in der Literatur beschrieben. Mit der Charakterisierung des neuronalen P2X3-Rezeptors und des postsynaptischen P2Y1-Rezeptors ist das GPI ein bisher einzigartiges funktionelles pharmakologisches Modell, in dem beide P2-Rezeptorsubtypen durch Einsatz des jeweiligen Agonisten, a,b-meATP oder ADPbS, pharmakologisch isoliert werden können. Charakterisierung von P2-Rezeptoren in der Längsmuskulatur des Rattenileum: Eine im Vergleich zum GPI gänzlich andere Situation zeigte sich im RI. Die getesteten P2-Agonisten ADPbS, a,b-meATP, a,b-meADP und ATPgS erzeugten Kontraktionen im untersuchten Gewebe, wobei sich a,b-meATP als effektivster Agonist erwies. Im Unterschied zum GPI führte eine wiederholte Gabe von a,b- meATP allerdings nicht zu einer Desensibilisierung des Rezeptors. Die durch Zugabe von TTX und Atropin erreichte Kontraktionshemmung lässt auf das Vorhandensein von sowohl prä- als auch postsynaptischen P2X-Rezeptoren schließen. Eine Trennung der durch diese Rezeptoren hervorgerufenen Effekte war im funktionellen Experiment jedoch nicht durchführbar. Keinerlei Effekt zeigte allerdings der Zusatz von TTX und Atropin auf die durch ADPbS ausgelösten Kontraktionen. Suramin, NF023 und PPADS erwiesen sich als sehr schwache Antagonisten an diesem Präparat. Auffällig war hingegen, dass die durch den Antagonisten verschobenen Kurven jeweils steiler und im Maximum höher waren als die Kontroll-Agonistenkurve. Man kann also hier nur spekulieren, dass durch die Antagonisten zunächst ein relaxationsvermittelnder Rezeptor geblockt wurde und in Folge nur noch der Effekt des kontraktionsvermittelnden Rezeptors sichtbar war. Obwohl Gewebe der Ratte häufig als funktionelle Modelle in der experimentellen Pharmakologie eingesetzt werden, konnten auf Grund fehlender subtypselektiver Agonisten und Antagonisten die kontraktionsvermittelnden P2-Rezeptorsubtypen im RI nicht identifiziert werden. Des weiteren zeigt ein Vergleich mit dem GPI, dass bedeutende Unterschiede bei der Verwendung gleichen Gewebes zweier verschiedener Spezies existieren können, die bei der vergleichenden Betrachtung von Affinitätswerten von Agonisten und Antagonisten zur Charakterisierung von Rezeptorsubtypen beachtet werden müssen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sittah Czeche
URN:urn:nbn:de:hebis:30-0000000703
Referee:Günter Lambrecht
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2003/05/14
Year of first Publication:2001
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2001/10/31
Release Date:2003/05/14
HeBIS-PPN:104488956
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoDeutsches Urheberrecht