## Selfconsistent calculations of mesonic properties at nonzero temperature

- After a brief introduction on QCD and effective models in the first chapter, I analyze the dependence of the QCD transition temperature on the quark (or pion) mass in the second chapter. I found that a linear sigma model, which links the transition to chiral symmetry restoration, predicts a much stronger dependence of T_c on m_pi than seen in present lattice data for m_pi >~ 0.4 GeV. On the other hand, an effective Lagrangian for the Polyakov loop requires only small explicit symmetry breaking to describe T_c(m_pi) in the above mass range. In the third and fourth chapter, I study the linear sigma model with O(N) symmetry at nonzero temperature in the framework of the Cornwall-Jackiw-Tomboulis formalism. Extending the set of two-particle irreducible diagrams by adding sunset diagrams to the usual Hartree-Fock (or Hartree) contributions, I derive a new approximation scheme which extends the standard Hartree-Fock (or Hartree) approximation by the inclusion of nonzero decay widths.