Ultrathin Tropical Tropopause Clouds (UTTCs) : II. Stabilization mechanisms

  • Mechanisms by which subvisible cirrus clouds (SVCs) might contribute to dehydration close to the tropical tropopause are not well understood. Recently Ultrathin Tropical Tropopause Clouds (UTTCs) with optical depths around 10-4 have been detected in the western Indian ocean. These clouds cover thousands of square kilometers as 200-300 m thick distinct and homogeneous layer just below the tropical tropopause. In their condensed phase UTTCs contain only 1-5% of the total water, and essentially no nitric acid. A new cloud stabilization mechanism is required to explain this small fraction of the condensed water content in the clouds and their small vertical thickness. This work suggests a mechanism, which forces the particles into a thin layer, based on upwelling of the air of some mm/s to balance the ice particles, supersaturation with respect to ice above and subsaturation below the UTTC. In situ measurements suggest that these requirements are fulfilled. The basic physical properties of this mechanism are explored by means of a single particle model. Comprehensive 1-D cloud simulations demonstrate this stabilization mechanism to be robust against rapid temperature fluctuations of +/- 0.5 K. However, rapid warming (Delta T > 2 K) leads to evaporation of the UTTC, while rapid cooling (Delta T < -2 K) leads to destabilization of the particles with the potential for significant dehydration below the cloud

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Beiping Luo, Thomas Peter, Heini WernliORCiDGND, Stephan FueglistalerORCiD, Martin Wirth, Christoph Kiemle, Harald Flentje, Vladimir A. Yushko, Vyacheslav Khattatov, Vladimir V. Rudakov, Andreas Thomas, Stephan BorrmannORCiDGND, Guido Toci, Piero Mazzinghi, Jürgen Beuermann, Cornelius SchillerGND, Francesco Cairo, Guido Di Donfrancesco, Alberto Adriani, C.-Michael Volk, Johan Strom, Kevin Noone, Valentin Mitev, Robert A. MacKenzie, Kenneth S. Carslaw, Thomas Trautmann, Vincenzo Santacesaria, Leopoldo Stefanutti
Parent Title (English):Atmospheric chemistry and physics, 3.2003, S. 1093-1100
Publisher:European Geosciences Union
Place of publication:Katlenburg-Lindau
Document Type:Article
Date of Publication (online):2003/07/29
Date of first Publication:2003/07/29
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2007/02/21
Page Number:8
First Page:1093
Last Page:1100
© 2003 Author(s). This work is licensed under a Creative Commons License.
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoCreative Commons - Namensnennung 3.0