Optimierung von Kinetik und Spezifität künstlicher metallfreier Ribonucleasen

  • Im Rahmen dieser Arbeit konnte die Regiospezifität und Spaltungsausbeute von 5’-modifizierten Trisbenzimidazolkonjugaten wie 53 unter Verwendung von Helfer-Sequenzen verbessert werden (S.74 ff). Mit dieser Technik gelang es, Turnover zu erzielen und so eine echte katalytische Aktivität der DNA-Konjugate nachzuweisen. Die verwendeten Helfer-DNA-Sequenzen sind günstig zu erwerben oder mit einem DNA-Synthesizer leicht selbst herzustellen und können so der jeweiligen Aufgabe perfekt angepasst werden. Weiterhin wurden verschiedene Versuche unternommen, ein 5’-modifiziertes Konjugat maßzuschneidern, so dass es durch interne bulge-Bildung mit seinem Substrat ebenfalls Turnover erreichen könnte und so katalytische Aktivität zeigte (S.59 ff). Diese Projekte wurden in Anlehnung an Arbeiten von Häner [91] durchgeführt, der damit Turnover erzielte, da das Konjugat nach Spaltung des bulges wieder in den katalytischen Zyklus eingegliedert werden konnte. Leider waren diese Versuche nicht von Erfolg gekrönt, obwohl man sich bei der Konzipierung der Substrat-Konjugat-Hybriden an die Sequenzen von Häner et.al. hielt. Statt dessen beobachtete man im Falle von Konjugat 51 bei der Hybridisierung die Ausbildung einer Helix; ein bulge konnte nicht erhalten werden (S. 61). Dieser Unterschied könnte auf die große, planare Spaltereinheit mit Europium(III) von Häner et. al. zurück zu führen sein, die im Falle der von uns untersuchten Konjugat-Substrat-Hybride fehlte, denn die 2-Aminobenzimidazol-Einheiten von Trisbenzimidazol 15 waren im Vergleich als klein anzusehen. Diese Vermutung führte schließlich zu zwei unterschiedlichen Ansätzen. Einer davon war es, eine größere intercalationsfähige Teilstruktur in das Konjugat einzuführen. Man versuchte deshalb ein Konjugat zu synthetisieren, welches zwischen der katalytischen Einheit und dem sequenzerkennenden Teil die Pyrenaminosäure 56 von Dr. M. Suhartono trug (S. 69 ff). Dieses sollte den großen, Häner’schen Rest imitieren und so einen bulge erzeugen. Leider gelang die Synthese dieses Konjugates nicht. Wie sich heraus stellte, war das kommerziell erworbene DNA-Material nicht geeignet für die angewendete Synthese. Eine Basen-Schutzgruppe bzw. das Anhydrid derselben, welches bei der Festphasensynthese als Capping-Reagenz verwendet wurde, führte zu einer irreversiblen Reaktion mit der 5'-NH2-Funktion an der DNA und machten das Material daher für eine Kupplung unbrauchbar. Eine andere Herangehensweise war es, die Faltung des Konjugat-Substrat-Hybrides voraus zu berechnen und so ein Hybrid zu erhalten, welches einen bulge ausbildete (S. 65 ff). Konjugat 55 und Substrat 54 wurden nach dieser Strukturvorhersage synthetisiert bzw. erworben und entsprachen genau den Erwartungen, ein interner bulge wurde ausgebildet. Dennoch konnte man auch mit diesem System keinen Turnover erreichen. Ein weiteres großes Teilgebiet dieser Arbeit war die Untersuchung kleiner Moleküle als unspezifische RNA-Spalter. Im Rahmen dieser Arbeit wurden speziell Guanidiniumanaloga auf ihre RNA-Spaltungsfähigkeit untersucht. In der Vergangenheit hatte man als Gütekriterium dieser Verbindungen das Augenmerk auf ihre pKa-Werte gerichtet. Sofern sich diese annähernd im physiologischen Bereich befanden, konnten häufig gute bis sehr gute RNA-Spaltungsausbeuten erzielt werden. Erstmals kam das Konzept der Energiedifferenz zwischen den tautomeren Formen eines guanidiniumtragenden Moleküls als Werkzeug zur Vorhersage der Güte eines RNA-Spalters zum Einsatz (S.113 ff). Sofern die beiden Strukturen (Amino- und Iminotautomer) sehr geringe Energieunterschiede aufwiesen, sollten sie sich besser als „Protonen-Shuttle“ eignen und so die Phosphosäuretransesterifikation katalytisch besser unterstützen. Zusammen mit dem pKa-Wert der Verbindungen wurde untersucht, ob dieses Konzept als Vorhersagemethode tragfähig ist. Unter den mit diesen Methoden gefundenen sowie kommerziell erhältlichen Molekülen konnte 2-Aminoperimidin 67 als sehr guter Spalter identifiziert werden. Verglichen mit Trisbenzimidazol 15 erreichte es ebenso gute Spaltungsraten wie letzteres, wobei 67 nur über eine einzige Guanidiniumeinheit verfügt. Dieser so identifizierte neue Kandidat für den Einbau in DNA-Konjugate enttäuschte auch nach Untersuchungen seines N-Methyl-Aminoderivates 80 nicht: Das Derivat zeigte eine ausreichend hohe Spaltungsaktivität, um es in Zukunft als Baustein für antisense-Konjugate in Frage kommen zu lassen. Es gab allerdings auch Schwierigkeiten bei der Untersuchung der kleinen Moleküle. Problematisch gestaltete sich ihre Löslichkeit in hohen Konzentrationen. Man ging deshalb dazu über, Co-Solventien wie Methanol oder DMSO zu verwenden, um auch während des Experimentes eine ausreichende Löslichkeit der Verbindungen zu gewährleisten. Ein Volumenanteil von 20% Co-Solvens stellte sich als ideal heraus, das Experiment wurde dadurch nicht negativ beeinflusst. Außerdem kam es zu Präzipitation einiger Substanzen (u.a. 2-Aminoperimidin 67) beim Auftragen auf das Sequenzierergel, welche die Auswertbarkeit dieser Experimente einschränkte. Die Verwendung eines neuen Harnstoffladepuffers beim Auftragen der Proben auf das Gel und das Senken der Substanzkonzentration (von mM auf μM) im Experiment verbesserten diese Situation deutlich. Häufig beobachtete Präzipitationseffekte waren danach größtenteils verschwunden, was die Auswertung der Spaltungsexperimente mit kleinen Molekülen erleichterte (S. 129 ff). Einige Verbindungen konnten mit der Kombination von ΔHf-Wertbestimmung und pKa-Wert-Bestimmung als schlechte RNA-Spalter korrekt vorhergesagt werden (z.B. 2-Aminopyridin 69, 2- Aminopyrimidin 68). Nicht ganz klar ist das mittelmäßige Abschneiden von Imidazoimidazol 71 als RNA-Spalter (S.136 ff). Durch seine Symmetrie liegt sein ΔHf-Wert bei 0 und auch sein pKa-Wert liegt mit 7.4 perfekt im physiologischen Bereich. Dennoch konnte es nur Spaltungsausbeuten von unter 10% bei Konzentrationen im höheren mM-Bereich erreichen. Es ist aber auch die einzige untersuchte Verbindung, die signifikant RNA schneidet, ohne diese gleichzeitig zu aggregieren oder zu denaturieren. Untersuchungen des Aggregationsverhaltens der kleinen Moleküle mittels FCS-Messungen (S. 139 ff) zeigten, dass fast alle bei hohen Konzentrationen – etwa im mM- oder hohem μMBereich – Aggregate bilden, und das auch bei Verwendung von Co-Solventien, wie es im Rahmen dieser Arbeit etabliert wurde. Man kann also bei den kleinen Katalysatoren nicht davon ausgehen, dass isolierte Moleküle für die beobachteten Effekte verantwortlich sind. Vielmehr agieren diese Moleküle bei solchen Konzentrationen als große oder kleine Aggregate, die durch die Vielzahl ihrer katalytischen Einheiten an der Oberfläche ihr Potential vervielfachen. Erst bei niedrigen Konzentrationen lösen sich die Aggregate auf, man kann hier wieder von einem Ein-Molekül-ein-Substrat-Mechanismus ausgehen (s. Schema 3 S. 110). Dies wird allerdings nicht als Ausschlusskriterium gesehen, diese Moleküle auch weiterhin als potentielle Kandidaten für antisense-Konjugatbausteine zu betrachten. In Konjugaten verhalten sie sich wie Einzelmoleküle, bei denen man streng mechanistische Betrachtungen anstellen kann und darf.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Kathrin DörrGND
URN:urn:nbn:de:hebis:30:3-246335
Referee:Joachim W. EngelsORCiDGND
Advisor:Michael Göbel
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2012/04/04
Year of first Publication:2012
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2012/03/28
Release Date:2012/04/24
Page Number:191
HeBIS-PPN:299757951
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht