On the interaction between thermal tides and gravity waves in the middle atmosphere

  • Die Wechselwirkung zwischen zwei verschiedenartigen Wellenphänomenen in einer Höhe von ca. 10 bis 100 km, der mittleren Atmosphäre, ist das zentrale Thema der vorliegenden Arbeit. Schwerewellen entstehen durch Oszillationen der Luft in einer stabil geschichteten Atmosphäre. Durch die Vielzahl von Schwerewellen-Paketen, die in der Troposphäre durch Gebirge, Gewitter, Fronten und andere dynamische Prozesse angeregt werden, wird Energie und Impuls in die mittleren Atmosphäre transportiert. Durch den turbulenten Zerfall von brechenden Schwerewellen wird auf die mittlere Strömung eine Kraft ausgeübt, welche im Bereich der Mesopause bei ca. 90 km maximal wird. Daraus resultiert die sogenannte interhemispherische residuelle Zirkulation, die in der Mesosphäre den Sommer- mit dem Winterpol verbindet und die beeindruckend kalte Sommer-Mesopause mit Temperaturen von unter −140°C verursacht. Thermische Gezeiten sind ein weiterer wichtiger Teil in der Dynamik der mittleren Atmosphäre. Sie werden durch die Erwärmung der Tagseite der Erde angeregt und sind globale Schwingungen mit Perioden von 24 Stunden und harmonischen Vielfachen. Mit Wind- und Temperatur-Amplituden von bis zu 50 m/s und 30 K dominieren sie die Tagesvariabilität im Mesopausen-Bereich. In der Mesosphäre wird die Wechselwirkung zwischen Schwerewellen und thermischen Gezeiten wichtig. Dort wird durch die Gezeitenwinde das Brechen von Schwerewellen zeitlich moduliert und eine periodische Kraft erzeugt, welche auf die Gezeiten rückwirkt. Doch selbst unter Zuhilfenahme modernster Hochleistungsrechner kann in komplexen Zirkulationsmodellen nur ein Bruchteil des turbulenten sowie des Wellen-Spektrums aufgelöst werden. Der Effekt der nichtaufgelösten Skalen, wie Turbulenz und Schwerewellen, muss somit in effizienter Weise parametrisiert werden. Üblicherweise wird in Schwerewellen-Parametrisierungen die horizontale und zeitliche Variation des Hintergrundmediums vernachlässigt. Es entsteht eine vertikale Säule, in der sich stationäre Schwerewellen-Züge instantan nach oben ausbreiten. Es ist jedoch äußerst fraglich, inwieweit eine solche Beschreibung, auf der ein Großteil früherer Untersuchungen basiert, für das Ergründen der Schwerewellen-Gezeiten-Wechselwirkung hinreicht. Für diese Arbeit wurde deswegen das Ziel gesetzt, die Defizite der konventionellen Beschreibung der Schwerewellen-Ausbreitung in realistischen Gezeiten zu quantifizieren. Die "Ray Tracing"-Methode wird auf die Problemstellung der Schwerewellen-Gezeiten-Wechselwirkung angewendet. In der "Ray Tracing"-Methode werden Schwerewellen-Pakete entlang ihrer Ausbreitungspfade explizit verfolgt und Veränderungen der Schwerewellen-Eigenschaften durch den Einfluss der Hintergrundströmung berücksichtigt. Vom Autor wurde das globale "Ray Tracing"-Modell RAPAGI (RAy PArameterization of Gravity-wave Impacts) entwickelt und mit realistischen Gezeitenfeldern aus dem Zirkulationsmodell HAMMONIA (HAmburg MOdel of the Neutral and Ionized Atmosphere) betrieben. In verschiedenen "Ray Tracing"-Experimenten wird für ein einfaches Schwerewellen-Ensemble gezeigt, wie horizontale Gradienten des Hintergrundmediums sowie dessen Zeitabhängigkeit wesentlichen Einfluss auf die Ausbreitung und Dissipation von Schwerewellen nehmen. Zum einen führt die durch Gezeitenwellen hervorgerufene Transienz zu einer tageszeitlichen Modulation der absoluten Schwerewellen-Frequenz. Die dadurch induzierten Variationen der horizontalen Phasengeschwindigkeit der Schwerewellen können die anfängliche Phasengeschwindigkeit um bis zu eine Größenordnung übertreffen und folgen dem Verlauf des Hintergrundwindes. Die kritische Filterung von Schwerewellen wird durch diese Modulation abgeschwächt, was im Vergleich zu konventionellen Schwerewellen-Parametrisierungen zu einer im Mittel um 30 % geringeren Kraftwirkung auf die Gezeiten führt. Zum anderen werden durch horizontale Gradienten in der gesamten Hintergrundströmung Schwerewellen-Pakete horizontal abgelenkt. Wellen, die gegen die Hintergrundströmung laufen, werden in der Stratosphäre in die Maxima der Wind-Jets hineingeführt. Durch dieses Verhalten wird analog zum Fermatschen Prinzip der geometrischen Optik die Laufzeit der Schwerewellen in der mittleren Atmosphäre minimiert. Es entsteht eine Fokussierung von Schwerewellen-Feldern, bei gleichzeitiger Zunahme der horizontalen Wellenzahl in den Experimenten im Mittel um ca. 10 %. Dadurch reduziert sich der Schwerewellen-Impulsfluss und die mittlere und ebenfalls die periodische Kraft auf die Hintergrundströmung im Mittel um weitere 20 % bis 30 %. Konventionelle Schwerewellen-Parametrisierungen scheinen somit die Kraftwirkung von brechenden Schwerewellen zu uberschätzen. Aus den Ergebnissen der Arbeit wird klar, dass Schwerewellen-Parametrisierungen nicht "blind" für jede Untersuchung genutzt werden können. Alle Annahmen und Näherungen in Parametrisierungen müssen je nach Zielstellung neu getestet werden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Fabian Senf
URN:urn:nbn:de:hebis:30:3-275978
Referee:Ulrich AchatzORCiDGND, Erich Becker
Advisor:Ulrich Achatz
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2012/12/19
Year of first Publication:2012
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2012/11/05
Release Date:2012/12/19
Tag:Gezeiten; Schwerewellen; mittlere Atmosphäre
gravity waves; ray tracing
Page Number:XVIII, 114
Note:
Die Dissertation wurde im Rahmen des Sonderforschungsbereichs CAWSES am Leibniz-Institut für Atmosphärenphysik, Kühlungsborn angefertigt.
HeBIS-PPN:314590897
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht