Cryogenic current comparators for precise ion beam current measurements

  • The planned Facility for Antiproton and Ion Research (FAIR) at GSI has to cope with a wide range of beam intensities in its high-energy beam transport systems and in the storage rings. To meet the requirements of a non-intercepting intensity measurement down to nA range, it is planned to install a number of Cryogenic Current Comparator (CCC) units at different locations in the FAIR beamlines. In this work, the first CCC system for intensity measurement of heavy ion beams, which was developed at GSI, was re-commissioned and upgraded to be used as a 'GSI - CCC prototype' for extensive optimization and development of an improved CCC for FAIR. After installation of a new SQUID sensor and related electronics, as well as implementation of improved data acquisition components, successful beam current measurements were performed at a SIS18 extraction line. The measured intensity values were compared with those of a Secondary Electron Monitor (SEM). Furthermore, the spill-structure of a slowly extracted beam was measured and analyzed, investigating its improvement due to bunching during the slow-extraction process. Due to the extreme sensitivity of the superconducting sensor, the determined intensity values as well as the adjustment of the system for optimal performance are strongly influenced by the numerous noise sources of the accelerators environment. For this reason, detailed studies of different effects caused by noise have been carried out, which are presented together with proposals to reduce them. Similarly, studies were performed to increase the dynamic range and overcome slew rate limitations, the results of which are illustrated and discussed as well. By combining the various optimizations and characterizations of the GSI CCC prototype with the experiences made during beam operation, criteria for a more efficient CCC System could be worked out, which are presented in this work. The details of this new design are worked out with respect to the corresponding boundary conditions at FAIR. Larger beam tube diameters, higher radiation resistivity and UHV requirements are of particular importance for the cryostat. At the same time these parameters affect the CCC superconducting magnetic shielding, which again has significant influence on the current resolution of the system. In order to investigate the influence of the geometry of the superconducting magnetic shield on different magnetic field components and to optimize the attenuation, FEM simulations have been performed. Based on the results of these calculations, modifications of the shield geometry for optimum damping behavior are proposed and discussed in the thesis.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Febin Kurian
Referee:Peter HülsmannGND, Oliver KesterORCiD
Advisor:Peter Hülsmann
Document Type:Doctoral Thesis
Year of Completion:2016
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/03/23
Release Date:2016/10/18
Page Number:142
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht