Magnetoelastic interactions and condensation of magnons in yttrium-iron garnet films

  • Magnetism is a beautiful example of a macroscopic quantum phenomenon. While known at least since the ancient Greeks, a microscopic theoretical explanation of magnetism could only be achieved with the advent of quantum mechanics at the beginning of the 20th century. Then it was understood that in a certain class of solids the famous Pauli exclusion principle leads to an effective interaction between the microscopic magnetic moments, i.e., the spins, which favors an ordered, and hence macroscopically magnetic, state. Nowadays, magnetic phenomena are used in a host of applications, and are especially relevant for information storage and processing technologies. Despite the long history of the field, magnetic phenomena are still an active research topic. In particular, in the last decade the fields of spintronics and spin-caloritronics emerged, which manipulate the microscopic spins via charge and heat currents respectively. This opens new avenues to potential applications; including the possibility to use the magnetic spin degrees of freedom instead of charges as carriers of information, which could provide a number of advantages such as reduced losses and further miniaturization. In this thesis we do not delve any further into the realm of possible applications. Instead we use sophisticated theories to explore the microscopic spin dynamics which is the basis of all such applications. We also focus on a particular compound: Yttrium-iron garnet (YIG), which is a ferrimagnetic insulator. This material has been widely used in experiments on magnetism over the last decades, and is a popular candidate for spintronic devices. Microscopically, the low-energy magnetic properties of YIG can be described by a ferromagnetic Heisenberg model. For spintronics and spin-caloritronics applications, it is however insufficient to only consider the magnetic degrees of freedom; one should also include the coupling of the spins to the elastic lattice vibrations, i.e., the phonons. Besides giving an overview on techniques used throughout the thesis, the introductory Ch. 1 provides a discussion of the microscopic Hamiltonian used to model the coupled spin-phonon system in the subsequent chapters. The topic of Ch. 2 are the consequences of the magnetoelastic coupling on the low-energy magnon excitations in YIG. Starting from the microscopic spin-phonon Hamiltonian, we rigorously derive the magnon-phonon hybridization and scattering vertices in a controlled spin wave expansion. For the experimentally relevant case of thin YIG films at room temperature, these vertices are then used to compute the magnetoelastic modes as well as the magnon damping. In the course of this work, the damping of magnons in this system was also investigated experimentally using Brillouin light scattering spectroscopy. While comparison to the experimental data shows that the magnetoelastic interactions do not dominate the total magnon relaxation in the experimentally accessible regime, we are able to show that the spin-lattice relaxation time is strongly momentum dependent, thereby providing a microscopic explanation of a recent experiment. In the final Ch. 3, we investigate a different phenomenon occurring in thin YIG films: Room temperature condensation of magnons. Prior work attributed this condensation process to quantum mechanics, i.e., it was interpreted as Bose-Einstein condensation. However, this is not satisfactory because at room temperature, the magnons in YIG behave as purely classical waves. In particular, the quantum Bose-Einstein distribution reduces to the classical Rayleigh-Jeans distribution in this case. In addition, the effective spin in YIG is very large. Therefore we start from the hypothesis that the room temperature magnon condensation is actually a new example of the kinetic condensation of classical waves, which has so far only been observed by imaging classical light in a photorefractive crystal. To distinguish this classical condensation from the quantum mechanical Bose-Einstein one, we refer to it as Rayleigh-Jeans condensation. To prove our claim, we consider the classical equations of motion of the coupled spin-phonon system. By eliminating the phonon degrees of freedom, we microscopically derive a non-Markovian stochastic Landau-Lifshitz-Gilbert equation (LLG) for the classical spin vectors. We then use this LLG to perform numerical simulations of the magnon dynamics, with all parameters fixed by experiments. These simulations accurately reproduce all stages of the magnon time evolution observed in experiments, including the appearance of the magnon condensate at the bottom of the magnon spectrum. In this way we confirm our initial hypothesis that the magnon condensation is a classical Rayleigh-Jeans condensation, which is unrelated to quantum mechanics.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Andreas Rückriegel
URN:urn:nbn:de:hebis:30:3-414949
Place of publication:Frankfurt am Main
Referee:Peter KopietzGND, Axel Pelster, Achim Rosch
Advisor:Peter Kopietz
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/09/08
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/09/05
Release Date:2016/09/08
Tag:magnon condensation; magnon-phonon interactions; yttrium-iron garnet
Page Number:135
HeBIS-PPN:386691029
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht